A Generative Approach to Materials Discovery, Design, and Optimization

计算机科学 生成语法 人工智能 深度学习 机器学习 理论计算机科学
作者
Dhruv Menon,Raghavan Ranganathan
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (30): 25958-25973 被引量:38
标识
DOI:10.1021/acsomega.2c03264
摘要

Despite its potential to transform society, materials research suffers from a major drawback: its long research timeline. Recently, machine-learning techniques have emerged as a viable solution to this drawback and have shown accuracies comparable to other computational techniques like density functional theory (DFT) at a fraction of the computational time. One particular class of machine-learning models, known as "generative models", is of particular interest owing to its ability to approximate high-dimensional probability distribution functions, which in turn can be used to generate novel data such as molecular structures by sampling these approximated probability distribution functions. This review article aims to provide an in-depth understanding of the underlying mathematical principles of popular generative models such as recurrent neural networks, variational autoencoders, and generative adversarial networks and discuss their state-of-the-art applications in the domains of biomaterials and organic drug-like materials, energy materials, and structural materials. Here, we discuss a broad range of applications of these models spanning from the discovery of drugs that treat cancer to finding the first room-temperature superconductor and from the discovery and optimization of battery and photovoltaic materials to the optimization of high-entropy alloys. We conclude by presenting a brief outlook of the major challenges that lie ahead for the mainstream usage of these models for materials research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
王佳琪完成签到,获得积分10
3秒前
thl完成签到,获得积分10
5秒前
英姑应助重要的冰绿采纳,获得10
5秒前
5秒前
独特的谷雪完成签到,获得积分10
6秒前
HEIKU应助Phalloidin采纳,获得10
8秒前
thl发布了新的文献求助150
9秒前
9秒前
w_完成签到,获得积分10
9秒前
gwenjing完成签到,获得积分10
10秒前
Melrose发布了新的文献求助10
10秒前
hwezhu完成签到,获得积分10
10秒前
13秒前
能干冰露完成签到,获得积分10
15秒前
Doublelin完成签到,获得积分10
15秒前
benj完成签到,获得积分10
16秒前
yiya完成签到,获得积分10
17秒前
18秒前
毛毛弟完成签到 ,获得积分10
19秒前
qqq完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
22秒前
草莓大王完成签到,获得积分10
23秒前
deadpool发布了新的文献求助10
23秒前
不羁完成签到 ,获得积分10
23秒前
潇湘学术完成签到,获得积分10
25秒前
譬如朝露发布了新的文献求助10
25秒前
齐半青发布了新的文献求助10
25秒前
27秒前
27秒前
jiayou完成签到,获得积分10
28秒前
yyyxw发布了新的文献求助10
29秒前
烟花应助狮子的猫采纳,获得10
30秒前
我是老大应助qiuzi采纳,获得30
31秒前
Lucas应助譬如朝露采纳,获得10
33秒前
nns完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3884065
求助须知:如何正确求助?哪些是违规求助? 3426370
关于积分的说明 10748344
捐赠科研通 3151170
什么是DOI,文献DOI怎么找? 1739404
邀请新用户注册赠送积分活动 839685
科研通“疑难数据库(出版商)”最低求助积分说明 784810