(Digital Presentation) Facile Fabrication of Graphene Quantum Dot- Doped Polyaniline Embedded Cu Metal-Organic Frameworks Composite Electrode As Improved Anode Electrocatalyst for Methanol Oxidation

可再生能源 阳极 材料科学 甲醇燃料 电催化剂 工艺工程 纳米技术 废物管理 甲醇 化学 电极 电气工程 工程类 电化学 有机化学 物理化学
作者
Sara Pashazadeh,Biuck Habibi,Ali Pashazadeh,Ali Fatemi,Milad Rasouli
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (41): 2491-2491
标识
DOI:10.1149/ma2022-01412491mtgabs
摘要

Nonrenewable energy sources accounted for roughly 80% of total energy consumption [1]. Solar energy, wind energy, geothermal energy, hydropower, and fuel cells (FCs) have all recently been described as renewable energy sources. In commercial uses, renewable energy has experienced meteorological and logistical obstacles. Because of advantages such as simple fabrication/operation conditions, eco-friendly, high energy conversion efficiency, and long-term durability, FCs technologies are considered one of the most important renewable energy sources for many applications such as portable devices, cars, and electricity plants [2–5]. Methanol can be utilized in direct methanol fuel cells (DMFC) to produce clean energy that can be used in smart electronic gadgets or small automobiles in this regard [6]. However, before DMFC can be used commercially, the slow oxidation kinetics and catalyst toxicity [7] must be resolved. Therefore, the development of direct methanol fuel cells (DMFCs) is one of the most promising technologies for the applications of these devices in stationary power supplies and electric vehicles [8]. Apart from the future of mobile devices such as mobile chargers, phones, computers, and many other applications, this energy is environmentally benign because no gases are emitted and the waste is simply clean water. The biggest issue that this technique may encounter is its high cost due to the usage of noble metal catalysts (platinum (Pt) and ruthenium (Ru)) [9]. Methanol is oxidized via a multi-electron process and several products and/or intermediates can be formed, depending on the electrolyte and the nature of the electrode. Electrode materials are important parameters in the electrochemical oxidation of methanol, where high efficient electrocatalysts are needed. Several metal oxides such as Fe 2 O 3 , CeO 2 , MoOx, Co 3 O 4 , NiO, and CuO has been used in various applications, such as catalysis, water splitting photocatalysis, solar cells and gas sensing, besides their uses to enhance the electrocatalytic activity for methanol oxidation [10-11]. This paper describes the preparation of graphene quantum dot-doped polyaniline embedded copper metal-organic frameworks composite catalysts for investigating methanol oxidation in alkaline solutions. The electrode surface was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). After physicochemical characterizations of graphene quantum dot-doped polyaniline embedded copper metal-organic frameworks composite modified carbon ceramic electrode (Cu- MOF/GQDs-PAN/CCE), its electrocatalytic and stability characterizations toward methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry and chronoamperometry. Results showed that, the electrocatalytic activity of the Cu- MOF/GQDs-PAN/CCE electrode is much higher than those of unmodified electrode under similar experimental conditions, showing the possibility of attaining good electrocatalytic anodes for fuel cells. Kinetic parameters such as the electron transfer coefficient (α) and the number of electrons involved in the rate determining step (n α ) for the oxidation of methanol were determined utilizing cyclic voltammetry (CV). Keywords: Graphene quantum dot, Polyaniline, Metal-organic frameworks, electrocatalyst, Methanol References [1] S.K. Kamarudin, F. Ahmad, W.R.W. Daud, Overview on application of direct methanol fuel cell (DMFC) for portable electronic devices, Int. J. Hydrog. Energy 34 (2009) 6902–6916. [2] L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells: principles, types, fuels and applications, ChemPhysChem 1 (2000) 162–193. [3] A.B. Stambouli, Fuel cells: The expectations for an environmental-friendly and sustainable source of energy, Renew. Sustain. Energy Rev. 15 (9) (2011) 4507– 4520. [4] P. Joghee, J.N. Malik, S. Pylypenko, R. O’Hayre, A review on direct methanol fuel cells – In the perspective of energy and sustainability, MRS Energy Sustain. 2 (2015), https://doi.org/10.1557/mre.2015.4. [5] D. Hassen, M.A. Shenashen, S.A. El-Safty, M.M. Selim, H. Isago, A. Elmarakbi, H. Yamaguchi, Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts, J. Power Sources 330 (2016) 292– 303. [6] M. Mansor, S.N. Timmiati, K.L. Lim, W.Y. Wong, S.K. Kamarudin, N.H. Nazirah Kamarudin, Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction, Int. J. Hydrogen Energy 44 (29) (2019) 14744–14769, https://doi.org/10.1016/j.ijhydene.2019.04.100. [7] Z. Mousavi, A. Benvidi, S. Jahanbani, M. Mazloum-Ardakani, R. Vafazadeh, H. R. Zare, Investigation of electrochemical oxidation of methanol at a carbon paste electrode modified with Ni(II)-BS complex and reduced graphene oxide nano sheets, Electroanalysis 28 (12) (2016) 2985–2992, https://doi.org/10.1002/ elan.201501183. [8] S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem. 461 (1-2) (1999) 14–31. [9] M. Liu, R. Zhang, W. Chen, Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications, Chem. Rev. 114 (2014) 5117– 5160. [10] N. Spinner, W.E. Mustain, Electrochim. Acta 56 (2011) 5656. [11] M.S. Risbud, S. Baxter, M. Skyllas-Kazacos, Open Fuels Energy Sci. J. 5 (2012) 9.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智毛豆完成签到,获得积分10
5秒前
HC3完成签到 ,获得积分10
6秒前
7秒前
小蘑菇应助nnnd77采纳,获得10
9秒前
传奇3应助lushuai采纳,获得10
10秒前
科研通AI6应助aliderichang采纳,获得10
10秒前
11秒前
在水一方应助苏莉婷采纳,获得10
11秒前
13秒前
14秒前
hygge发布了新的文献求助10
15秒前
15秒前
Zz发布了新的文献求助10
18秒前
天天快乐应助魂梦与君同采纳,获得10
18秒前
爱学习的小木完成签到,获得积分10
19秒前
李可发布了新的文献求助10
20秒前
22秒前
马某发布了新的文献求助20
22秒前
小蘑菇应助hanbin采纳,获得10
26秒前
所所应助木雷采纳,获得20
32秒前
hhhhzzzz完成签到 ,获得积分10
33秒前
35秒前
orixero应助黑化小狗采纳,获得30
36秒前
浮游应助wch666采纳,获得30
38秒前
浮游应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得100
38秒前
Hello应助科研通管家采纳,获得10
38秒前
Green发布了新的文献求助10
38秒前
共享精神应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
李牧应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得30
38秒前
李牧应助科研通管家采纳,获得10
38秒前
爆米花应助科研通管家采纳,获得10
38秒前
李牧应助科研通管家采纳,获得10
39秒前
李牧应助科研通管家采纳,获得10
39秒前
ding应助科研通管家采纳,获得10
39秒前
深情安青应助科研通管家采纳,获得10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761641
求助须知:如何正确求助?哪些是违规求助? 4101657
关于积分的说明 12692008
捐赠科研通 3817461
什么是DOI,文献DOI怎么找? 2107224
邀请新用户注册赠送积分活动 1131922
关于科研通互助平台的介绍 1010885