生物
小虾
毒力
副溶血性弧菌
肠道菌群
微生物学
病菌
生态学
失调
动物
免疫学
细菌
基因
遗传学
作者
Haonan Sha,Luyue Li,Jiaqi Lü,Jinbo Xiong
标识
DOI:10.1016/j.fsi.2022.07.016
摘要
Shrimp diseases frequently occur during the later farming stages, when the rearing water is eutrophic. This observation provides clue that the virulence of pathogens could be induced by elevated nutrient, whereas the underlying ecological mechanism remains limited. To address this pressing knowledge, we explored how gut microbiota responded to the infection of oligotrophic (OVp) or eutrophic (EVp) pre-cultured Vibrio parahaemolyticus, a causing pathogen of shrimp acute hepatopancreatic necrosis disease (AHPND). Resulted revealed that OVp and EVp infections caused dysbiosis in the gut microbiota and compromised shrimp immunity, while the later infection led to earlier and higher mortality. Significant associations were detected between the gut microbiota and each of the measured immune activities. Neutral community model showed that the assembly of gut microbiota was more strongly governed by deterministic processes in EVp infection, followed by EVp infected and control shrimp. Additionally, there were significantly lower temporal turnover rate and average variation degree in the gut microbiota in EVp infected shrimp compared with control individuals. Notably, we identified 22 infection-discriminatory taxa after ruling out the ontogenic effect. Using profiles of the 22 indicators as independent variables, the diagnosis model accurately distinguished (an overall 85.9% accuracy) the infected status (control, OVp or EVp infected shrimp), with 81.3% accuracy at the initial infection stage. The convergent and deterministic gut microbiota in EVp infected shrimp could partially explain why it is challenge to cure APHND from an ecological viewpoint. In addition, we provided a sensitive approach for diagnosing the onset of infection, when disease symptom is unobservable.
科研通智能强力驱动
Strongly Powered by AbleSci AI