Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions

模式 模态(人机交互) 心力衰竭 机器学习 医学诊断 心脏病 人工智能 计算机科学 特征(语言学) 冠状动脉疾病 医学 数据挖掘 心脏病学 放射科 哲学 社会学 社会科学 语言学
作者
Ashir Javeed,Shafqat Ullah Khan,Liaqat Ali,Sardar Ali,Yakubu Imrana,Atiqur Rahman
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-30 被引量:53
标识
DOI:10.1155/2022/9288452
摘要

One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖兰发布了新的文献求助20
1秒前
w123完成签到,获得积分10
2秒前
科研通AI5应助zjq采纳,获得10
4秒前
MZCCaiajie发布了新的文献求助10
4秒前
Lds发布了新的文献求助10
7秒前
长生完成签到,获得积分10
8秒前
lee完成签到,获得积分10
8秒前
hs完成签到,获得积分10
9秒前
9秒前
爆米花应助美味肉蟹煲采纳,获得10
11秒前
自然松完成签到,获得积分10
11秒前
12秒前
Anthony_潇完成签到,获得积分10
12秒前
情怀应助七公主采纳,获得10
14秒前
飘逸书易完成签到,获得积分10
14秒前
15秒前
无花果应助00采纳,获得10
16秒前
木同人发布了新的文献求助10
16秒前
18秒前
顾矜应助舒心的寻琴采纳,获得200
18秒前
19秒前
jackcy完成签到 ,获得积分10
21秒前
22秒前
打打应助程莉采纳,获得10
23秒前
24秒前
24秒前
25秒前
25秒前
迷人的小土豆完成签到,获得积分10
25秒前
科研通AI5应助LQ采纳,获得10
26秒前
佚名发布了新的文献求助10
26秒前
循环bug完成签到,获得积分10
26秒前
坚若磐石完成签到,获得积分10
26秒前
小彭陪小崔读个研完成签到 ,获得积分10
27秒前
27秒前
28秒前
00发布了新的文献求助10
29秒前
林建峰完成签到,获得积分10
30秒前
开朗依白发布了新的文献求助10
31秒前
夜已深发布了新的文献求助10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225