亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions

模式 模态(人机交互) 心力衰竭 机器学习 医学诊断 心脏病 人工智能 计算机科学 特征(语言学) 冠状动脉疾病 医学 数据挖掘 心脏病学 放射科 哲学 社会学 社会科学 语言学
作者
Ashir Javeed,Shafqat Ullah Khan,Liaqat Ali,Sardar Ali,Yakubu Imrana,Atiqur Rahman
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-30 被引量:53
标识
DOI:10.1155/2022/9288452
摘要

One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
加菲丰丰完成签到,获得积分0
8秒前
16秒前
fransiccarey完成签到,获得积分10
22秒前
顾矜应助胖哥采纳,获得10
44秒前
兜里没糖了完成签到 ,获得积分10
51秒前
Yi完成签到 ,获得积分10
53秒前
58秒前
59秒前
胖哥发布了新的文献求助10
1分钟前
1分钟前
肖恩发布了新的文献求助10
1分钟前
肖恩完成签到,获得积分10
1分钟前
Heaven完成签到,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
2分钟前
胖哥发布了新的文献求助10
2分钟前
2分钟前
Jasper应助Eugene采纳,获得10
2分钟前
Logan完成签到,获得积分10
2分钟前
2分钟前
Heaven发布了新的文献求助10
3分钟前
monair完成签到 ,获得积分10
3分钟前
3分钟前
Willy完成签到,获得积分10
3分钟前
上官若男应助Cheung2121采纳,获得10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
4分钟前
领导范儿应助红岚幽客采纳,获得10
4分钟前
4分钟前
sunfield2014完成签到 ,获得积分20
4分钟前
夏小正发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
明鹄完成签到 ,获得积分10
4分钟前
红岚幽客发布了新的文献求助10
4分钟前
123发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060917
求助须知:如何正确求助?哪些是违规求助? 3599429
关于积分的说明 11432156
捐赠科研通 3323465
什么是DOI,文献DOI怎么找? 1827290
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699