Neural Network Structure Optimization by Simulated Annealing

模拟退火 计算机科学 人工神经网络 数学优化 启发式 修剪 GSM演进的增强数据速率 反向传播 计算复杂性理论 算法 人工智能 数学 农学 生物
作者
Chun Lin Kuo,Erçan E. Kuruoğlu,Wai Kin Chan
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:24 (3): 348-348 被引量:9
标识
DOI:10.3390/e24030348
摘要

A critical problem in large neural networks is over parameterization with a large number of weight parameters, which limits their use on edge devices due to prohibitive computational power and memory/storage requirements. To make neural networks more practical on edge devices and real-time industrial applications, they need to be compressed in advance. Since edge devices cannot train or access trained networks when internet resources are scarce, the preloading of smaller networks is essential. Various works in the literature have shown that the redundant branches can be pruned strategically in a fully connected network without sacrificing the performance significantly. However, majority of these methodologies need high computational resources to integrate weight training via the back-propagation algorithm during the process of network compression. In this work, we draw attention to the optimization of the network structure for preserving performance despite compression by pruning aggressively. The structure optimization is performed using the simulated annealing algorithm only, without utilizing back-propagation for branch weight training. Being a heuristic-based, non-convex optimization method, simulated annealing provides a globally near-optimal solution to this NP-hard problem for a given percentage of branch pruning. Our simulation results have shown that simulated annealing can significantly reduce the complexity of a fully connected network while maintaining the performance without the help of back-propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Abiy采纳,获得10
1秒前
123发布了新的文献求助10
1秒前
毛毛完成签到,获得积分10
2秒前
2秒前
5秒前
stt完成签到 ,获得积分10
5秒前
GT完成签到,获得积分10
6秒前
科目三应助会飞采纳,获得10
8秒前
Eternal完成签到,获得积分10
8秒前
9秒前
小木瓜应助Isaac采纳,获得10
10秒前
虚幻的酒窝完成签到,获得积分10
12秒前
Wayne_Sun完成签到,获得积分10
12秒前
科目三应助土豆丝采纳,获得10
13秒前
13秒前
善学以致用应助May采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
17秒前
共享精神应助害怕的小玉采纳,获得10
17秒前
阿里院士完成签到,获得积分10
19秒前
科研通AI5应助落寞凌波采纳,获得10
20秒前
何仁杰发布了新的文献求助10
20秒前
ves完成签到,获得积分10
21秒前
22秒前
Sukey完成签到,获得积分10
23秒前
会飞发布了新的文献求助10
23秒前
23秒前
25秒前
25秒前
SciGPT应助ziwei采纳,获得10
25秒前
25秒前
orixero应助Isaac采纳,获得10
26秒前
26秒前
lumos发布了新的文献求助10
28秒前
29秒前
caffeine完成签到,获得积分10
29秒前
我叫马友才呀完成签到,获得积分10
29秒前
luobeibei完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助20
29秒前
泥泥应助lalla采纳,获得30
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224951
求助须知:如何正确求助?哪些是违规求助? 3758317
关于积分的说明 11813581
捐赠科研通 3419885
什么是DOI,文献DOI怎么找? 1876935
邀请新用户注册赠送积分活动 930363
科研通“疑难数据库(出版商)”最低求助积分说明 838582