MNIST数据库
卷积神经网络
奇异值分解
卷积(计算机科学)
计算机科学
人工智能
模式识别(心理学)
特征提取
深度学习
奇异值
特征(语言学)
矩阵分解
基质(化学分析)
人工神经网络
物理
语言学
材料科学
量子力学
特征向量
复合材料
哲学
作者
Sarosij Bose,Avirup Dey
标识
DOI:10.1109/upcon52273.2021.9667654
摘要
Convolutional Neural Networks (CNN) have been used for long for feature extraction from images in deep learning. Here we introduce ResilientCNN or ResCNN for short where we show that when convolution is implemented as an matrix-matrix operation coupled with some image processing techniques like Singular Value Decomposition (SVD) can be used as an better alternative to traditional convolution. We show that our ResCNN learns with bigger batch sizes and at much higher learning rates (7x) without compromising on accuracy compared to traditional convolutional networks by implementing both models on the MNIST Dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI