Deep learning‐based AI model for signet‐ring cell carcinoma diagnosis and chemotherapy response prediction in gastric cancer

医学 印戒细胞癌 化疗 队列 癌症 接收机工作特性 内科学 肿瘤科 回顾性队列研究 比例危险模型 曲线下面积 生存分析 放射科 腺癌
作者
Cong Li,Yun Qin,Weihan Zhang,Hanyu Jiang,Bin Song,Mustafa R. Bashir,Heng Xu,Ting Duan,Mengjie Fang,Lianzhen Zhong,Lingwei Meng,Di Dong,Zhenhua Hu,Jie Tian,Jian‐Kun Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1535-1546 被引量:27
标识
DOI:10.1002/mp.15437
摘要

We aimed to develop a noninvasive artificial intelligence (AI) model to diagnose signet-ring cell carcinoma (SRCC) of gastric cancer (GC) and identify patients with SRCC who could benefit from postoperative chemotherapy based on preoperative contrast-enhanced computed tomography (CT).A total of 855 GC patients with 855 single GCs were included, of which 249 patients were diagnosed as SRCC by histopathologic examinations. The AI model was generated with clinical, handcrafted radiomic, and deep learning features. Model diagnostic performance was measured by area under the receiver operating characteristic curve (AUC), sensitivity, and specificity, while predictive performance was measured by Kaplan-Meier curves.In the test cohort (n = 257), the AUC, sensitivity, and specificity of our AI model for diagnosing SRCC were 0.786 (95% CI: 0.721-0.845), 77.3%, and 69.2%, respectively. For the entire cohort, patients with AI-predicted high risk had a significantly shorter median OS compared with those with low risk (median overall survival [OS], 38.8 vs. 64.2 months, p = 0.009). Importantly, in pathologically confirmed advanced SRCC patients, AI-predicted high-risk status was indicative of a shorter overall survival (median overall survival [OS], 31.0 vs. 54.4 months, p = 0.036) and marked chemotherapy resistance, whereas AI-predicted low-risk status had substantial chemotherapy benefit (median OS [without vs. with chemotherapy], 26.0 vs. not reached, p = 0.013).The CT-based AI model demonstrated good performance for diagnosing SRCC, stratifying patient prognosis, and predicting chemotherapy responses. Advanced SRCC patients with AI-predicted low-risk status may benefit substantially from adjuvant chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC2333完成签到,获得积分10
1秒前
1秒前
3秒前
5秒前
JamesPei应助Vlory采纳,获得10
7秒前
8秒前
NexusExplorer应助ff采纳,获得10
8秒前
naturehome发布了新的文献求助10
10秒前
Bebop完成签到,获得积分10
10秒前
10秒前
蓝蜗牛发布了新的文献求助10
13秒前
13秒前
小二郎应助jgfopajpoajh采纳,获得10
14秒前
阿仔爱学习完成签到,获得积分10
14秒前
心灵美的抽屉完成签到,获得积分20
16秒前
HXL发布了新的文献求助10
17秒前
亮仔发布了新的文献求助10
18秒前
18秒前
19秒前
彭于晏应助小鲁采纳,获得10
22秒前
23秒前
tina完成签到,获得积分10
23秒前
24秒前
Crest发布了新的文献求助10
24秒前
周周完成签到,获得积分20
26秒前
chenjyuu完成签到,获得积分10
26秒前
song发布了新的文献求助10
26秒前
26秒前
hjw发布了新的文献求助10
26秒前
霸气的梦露完成签到,获得积分10
27秒前
静文完成签到,获得积分10
27秒前
Rubby应助甜蜜的致远采纳,获得10
28秒前
朱丁丁发布了新的文献求助10
29秒前
29秒前
30秒前
Crest完成签到,获得积分10
30秒前
31秒前
31秒前
Saint发布了新的文献求助10
31秒前
FashionBoy应助飞快的寒香采纳,获得10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4159583
求助须知:如何正确求助?哪些是违规求助? 3695483
关于积分的说明 11670341
捐赠科研通 3387407
什么是DOI,文献DOI怎么找? 1857534
邀请新用户注册赠送积分活动 918528
科研通“疑难数据库(出版商)”最低求助积分说明 831534