Research advances in fault diagnosis and prognostic based on deep learning

深度学习 人工智能 卷积神经网络 深信不疑网络 计算机科学 机器学习 断层(地质) 领域(数学) 人工神经网络 特征工程 数学 地质学 地震学 纯数学
作者
Guangbo Zhao,Guohui Zhang,Qiangqiang Ge,Xiaoyong Liu
标识
DOI:10.1109/phm.2016.7819786
摘要

Aiming to condition based maintenance for complex equipment, numerous intelligent fault diagnosis and prognostic methods based on machine learning have been researched. Compared with the traditional shallow models, which have problems of lacking expression capacity and existing the curse of dimensionality, using deep learning theory can effectively mine characteristics and accurately recognize the health condition. In consequence, fault diagnosis and prognostic based on deep learning have turned into an innovative and promising research field. This paper gives a review of fault diagnosis and prognostic based on deep learning. First of all, a brief introduction to deep learning architecture and the framework of fault diagnosis based on deep learning is described. Second, tracking describes the latest progress of fault diagnosis and prognostic based on deep learning in chronological order. In this section, the deep learning methods used in fault diagnosis and prognostic are discussed, including Deep Neural Network (DNN), Deep Belief Network (DBN) and Convolutional Neural Network (CNN). Then the engineering application fields are summarized, such as mechanical equipment diagnosis, electrical equipment diagnosis, etc. Finally, this paper indicates the potential future research issues in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
充电宝应助mingjiang采纳,获得10
3秒前
CodeCraft应助勤奋甜瓜采纳,获得10
4秒前
小二郎应助happyou采纳,获得10
4秒前
犹豫的夏旋完成签到 ,获得积分10
5秒前
6秒前
风和日丽完成签到,获得积分10
7秒前
卑微学术人完成签到 ,获得积分10
9秒前
冰糖葫芦娃完成签到 ,获得积分10
9秒前
SYLH应助薛定谔的猫采纳,获得10
12秒前
12秒前
12秒前
meng完成签到,获得积分10
13秒前
在水一方应助黄河鲤鱼儿采纳,获得10
13秒前
naitangkeke完成签到,获得积分10
14秒前
魏你大爷完成签到,获得积分10
14秒前
情怀应助kkk采纳,获得10
17秒前
19秒前
21秒前
22秒前
爱喝点啤酒完成签到,获得积分10
23秒前
大方弘文应助勤奋甜瓜采纳,获得10
23秒前
sldl发布了新的文献求助30
23秒前
cjz发布了新的文献求助10
24秒前
英俊的铭应助好的老师采纳,获得10
25秒前
jinmuna完成签到,获得积分10
26秒前
万雨斌发布了新的文献求助10
28秒前
倩倩发布了新的文献求助10
29秒前
huahua应助王振兴采纳,获得10
29秒前
29秒前
JamesPei应助cjz采纳,获得10
31秒前
xh完成签到,获得积分10
33秒前
白开水完成签到,获得积分10
33秒前
ZHONK1NG发布了新的文献求助10
34秒前
Srishti完成签到,获得积分10
35秒前
allenise完成签到,获得积分10
35秒前
Sandy完成签到,获得积分10
38秒前
科研通AI5应助lx采纳,获得10
39秒前
40秒前
小轩完成签到,获得积分10
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838395
求助须知:如何正确求助?哪些是违规求助? 3380695
关于积分的说明 10515576
捐赠科研通 3100341
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772907