已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Characterization of droughts during 2001–2014 based on remote sensing: A case study of Northeast China

环境科学 降水 中国 异常(物理) 农业 灌溉 植被(病理学) 气候变化 含水量 归一化差异植被指数 气候学 自然地理学 水文学(农业) 地理 农学 生态学 气象学 地质学 生物 医学 物理 凝聚态物理 病理 考古 岩土工程
作者
Dianmin Cong,Shuhe Zhao,Cheng Chen,Zheng Duan
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:39: 56-67 被引量:67
标识
DOI:10.1016/j.ecoinf.2017.03.005
摘要

Northeast China, the most important region for commercial grain farming in China, is vulnerable to drought due to high fluctuation in monthly rainfall. Timely, accurate and effective drought monitoring is very essential for securing the output of grain farming. In this study, three widely used drought indices were compared using satellite soil moisture data and their capability for drought monitoring was evaluated in Northeast China. Three indices are Normalized Monthly Precipitation Anomaly Percentage (NPA), Vegetation Health Index (VHI) and Normalized Vegetation Supply Water Index (NVSWI). In order to know the relationship between rainfall and drought especially over different local climate zones and give a more detail strategy for crop irrigation, a time-lag relationship is investigated based on the TRMM 3B43 monthly precipitation and NVSWI. Tendency rate (slope) was used to characterize the change of drought events in the region for the period 2001–2014. Results showed that: (1) the three selected indices were suitable for drought monitoring, with NVSWI performing the best in terms of the highest correlation with soil moisture, (2) an obvious time-lag was observed between rainfall and drought with the time lag being one month for all three climate zones, (3) drought occurred more frequently in spring and winter, while in summer drought occurred more easily in the west than in the east in Northeast China, (4) overall the frequency of drought was decreasing from 2001 to 2014 in Northeast China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助wh采纳,获得10
1秒前
TH发布了新的文献求助10
2秒前
圈儿多尼完成签到,获得积分10
2秒前
善学以致用应助Tiam采纳,获得10
3秒前
颜凝丹发布了新的文献求助10
4秒前
Sylvia完成签到,获得积分10
4秒前
科目三应助huang采纳,获得10
5秒前
Founder完成签到,获得积分10
6秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
赘婿应助青黛采纳,获得10
15秒前
18秒前
眼泪成诗完成签到 ,获得积分10
20秒前
所所应助TH采纳,获得10
22秒前
23秒前
25秒前
25秒前
28秒前
勇敢的大野狼完成签到,获得积分10
30秒前
落寞身影完成签到,获得积分10
30秒前
青黛发布了新的文献求助10
30秒前
欧石楠发布了新的文献求助10
32秒前
科研通AI5应助魏伯安采纳,获得10
33秒前
澄子完成签到 ,获得积分10
33秒前
科研通AI5应助落寞身影采纳,获得10
35秒前
无花果应助HJJHJH采纳,获得50
35秒前
36秒前
Andrew完成签到,获得积分10
36秒前
友好真完成签到 ,获得积分10
37秒前
41秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833509
求助须知:如何正确求助?哪些是违规求助? 3375984
关于积分的说明 10491339
捐赠科研通 3095536
什么是DOI,文献DOI怎么找? 1704424
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771721