舒尔补语
数学
补语(音乐)
舒尔定理
群(周期表)
组合数学
舒尔积定理
纯数学
域代数上的
舒尔分解
特征向量
化学
物理
正交多项式
互补
有机化学
表型
生物化学
经典正交多项式
基因
Gegenbauer多项式
量子力学
作者
Julio Benítez,Néstor Thome
标识
DOI:10.1080/03081080500348709
摘要
In this article, two facts related to the generalized Schur complement are studied. The first one is to find necessary and sufficient conditions to characterize when the group inverse of a partitioned matrix can be expressed in the Schur form. The other one is to develop a formula for any power of the generalized Schur complement of an idempotent partitioned matrix and then to characterize when this generalized Schur complement is a (k+1)-potent matrix. In addition, some spectral theory related to this complement is analyzed.
科研通智能强力驱动
Strongly Powered by AbleSci AI