Droplet formation in a T-shaped microfluidic junction

毛细管数 分手 润湿 毛细管作用 格子Boltzmann方法 粘度 接触角 流动聚焦 微流控 纵横比(航空) 体积流量 机械 材料科学 毛细管压力 流量(数学) 化学 纳米技术 物理 复合材料 多孔介质 多孔性
作者
Haihu Liu,Yonghao Zhang
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:106 (3) 被引量:198
标识
DOI:10.1063/1.3187831
摘要

Using a phase-field model to describe fluid/fluid interfacial dynamics and a lattice Boltzmann model to address hydrodynamics, two dimensional (2D) numerical simulations have been performed to understand the mechanisms of droplet formation in microfluidic T-junction. Although 2D simulations may not capture underlying physics quantitatively, our findings will help to clarify controversial experimental observations and identify new physical mechanisms. We have systematically examined the influence of capillary number, flow rate ratio, viscosity ratio, and contact angle in the droplet generation process. We clearly observe that the transition from the squeezing regime to the dripping regime occurs at a critical capillary number of 0.018, which is independent of flow rate ratio, viscosity ratio, and contact angle. In the squeezing regime, the squeezing pressure plays a dominant role in the droplet breakup process, which arises when the emerging interface obstructs the main channel. The droplet size depends on both the capillary number and the flow rate ratio, but is independent of the viscosity ratio under completely hydrophobic wetting conditions. In the dripping regime, the droplet size will be significantly influenced by the viscosity ratio as well as the built-up squeezing pressure. When the capillary number increases, the droplet size becomes less dependent on the flow rate ratio. The contact angle also affects the droplet shape, size, and detachment point, especially at small capillary numbers. More hydrophobic wetting properties are expected to produce smaller droplets. Interestingly, the droplet size is dependent on the viscosity ratio in the squeezing regime for less hydrophobic wetting conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
艾登登发布了新的文献求助10
刚刚
情怀应助温婉的勒采纳,获得10
刚刚
早日毕业发布了新的文献求助10
刚刚
汉堡包应助YYMY2022采纳,获得10
1秒前
cdercder应助ee采纳,获得10
1秒前
隐形静芙完成签到 ,获得积分10
1秒前
2秒前
ding应助沉静缘分采纳,获得10
3秒前
3秒前
Lan完成签到 ,获得积分10
3秒前
曾经的丹彤完成签到,获得积分10
3秒前
Green完成签到,获得积分10
3秒前
科研通AI5应助符寄柔采纳,获得10
3秒前
4秒前
Ankher发布了新的文献求助200
4秒前
ECUST发布了新的文献求助10
4秒前
dangziutiu完成签到 ,获得积分10
4秒前
动力小滋完成签到,获得积分10
4秒前
yumemakase完成签到,获得积分10
4秒前
4秒前
妮妮完成签到,获得积分10
5秒前
hea完成签到,获得积分10
5秒前
Hannahcx发布了新的文献求助10
6秒前
6秒前
糊涂的元珊完成签到 ,获得积分10
6秒前
sunshine完成签到,获得积分10
6秒前
齐齐发布了新的文献求助10
6秒前
zcg完成签到,获得积分10
6秒前
激动的谷秋完成签到,获得积分10
7秒前
懵懂的南风完成签到,获得积分10
7秒前
7秒前
飞快的孱完成签到,获得积分10
8秒前
muyige完成签到,获得积分10
8秒前
飘零的歌手完成签到,获得积分10
8秒前
6260完成签到,获得积分10
8秒前
科研通AI5应助木木采纳,获得10
9秒前
安详的语蕊完成签到,获得积分10
9秒前
小肆发布了新的文献求助10
9秒前
NexusExplorer应助1111111111111采纳,获得10
9秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173