The great escape: how cationic polyplexes overcome the endosomal barrier

内体 基因传递 转染 生物物理学 阳离子聚合 核酸 纳米技术 细胞生物学 化学 生物 材料科学 基因 细胞 生物化学 有机化学
作者
Tanja Buś,Anja Traeger,Ulrich S. Schubert
出处
期刊:Journal of Materials Chemistry B [Royal Society of Chemistry]
卷期号:6 (43): 6904-6918 被引量:305
标识
DOI:10.1039/c8tb00967h
摘要

The targeted and efficiency-oriented delivery of (therapeutic) nucleic acids raises hope for successful gene therapy, i.e., for the local and individual treatment of acquired and inherited genetic disorders. Despite promising achievements in the field of polymer-mediated gene delivery, the efficiency of the non-viral vectors remains orders of magnitude lower than viral-mediated ones. Several obstacles on the molecular and cellular level along the gene delivery process were identified, starting from the design and formulation of the nano-sized carriers up to the targeted release to their site of action. In particular, the efficient escape from endo-lysosomal compartments was demonstrated to be a major barrier and its exact mechanism still remains unclear. Different hypotheses and theories of the endosomal escape were postulated. The most popular one is the so-called "proton sponge" hypothesis, claiming an escape by rupture of the endosome through osmotic swelling. It was the first effort to explain the excellent transfection efficiency of poly(ethylene imine). Moreover, it was thought that a unique mechanism based on the ability to capture protons and to buffer the endosomal pH is the basis of endosomal escape. Recent theories deal with the direct interaction of the cationic polyplex or free polymer with the exoplasmic lipid leaflet causing membrane destabilization, permeability or polymer-supported nanoscale hole formation. Both escape strategies are more related to viral-mediated escape compared to the "proton sponge" effect. This review addresses the different endosomal release theories and highlights their key mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mississippiecho完成签到,获得积分10
1秒前
scdd完成签到 ,获得积分10
1秒前
Gakay发布了新的文献求助10
1秒前
汉库克完成签到,获得积分10
2秒前
bob完成签到,获得积分20
4秒前
充电宝应助欢喜的天空采纳,获得10
4秒前
诚心八宝粥完成签到,获得积分10
5秒前
彤酱完成签到 ,获得积分10
9秒前
大模型应助916采纳,获得10
9秒前
天真豪完成签到 ,获得积分10
10秒前
11秒前
12秒前
搞科研的静静完成签到,获得积分10
14秒前
归尘应助ellieou采纳,获得20
16秒前
xbb88发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
21秒前
xbb88完成签到,获得积分10
22秒前
22秒前
艾利克斯发布了新的文献求助10
23秒前
23秒前
23秒前
传奇3应助zz采纳,获得10
24秒前
曹能豪完成签到,获得积分10
24秒前
可耐的乐荷完成签到,获得积分10
31秒前
完美世界应助916采纳,获得10
31秒前
dennisysz发布了新的文献求助10
32秒前
35秒前
辞忧完成签到,获得积分10
35秒前
35秒前
liuzengzhang666完成签到,获得积分10
36秒前
安静一曲完成签到 ,获得积分10
38秒前
melody发布了新的文献求助10
38秒前
39秒前
40秒前
wlei发布了新的文献求助10
41秒前
有魅力的乐珍完成签到 ,获得积分10
45秒前
刘十六发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103