Organic piezoelectric materials: milestones and potential

压电 材料科学 纳米技术 生物分子 超分子化学 化学 晶体结构 复合材料 结晶学
作者
Sarah Guerin,Syed A. M. Tofail,Damien Thompson
出处
期刊:Npg Asia Materials [Nature Portfolio]
卷期号:11 (1) 被引量:97
标识
DOI:10.1038/s41427-019-0110-5
摘要

Abstract Research on the piezoelectric response of biomolecules has intensified following demonstration of open circuit voltages of over 20 V in biopiezoelectric generators. Organic piezoelectric nanotubes, fibers, and micro-islands have been grown and studied; however, the lack of fundamental understanding of the piezoelectric effect in nature hinders the rational design of biomaterials to provide a tailor-made piezoelectric response. Advances in high performance computing have facilitated the use of quantum mechanical calculations to predict the full piezoelectric tensor of biomolecular crystals, including amino acids and small peptides. By identifying directions of high piezoelectric response, the simulations can guide experimental crystal growth, device fabrication and electrical testing, which have led to the demonstration of unprecedented piezoelectric responses in organic crystals on the order of 200 pC/N. These large responses arise from strong supramolecular dipoles, which can be tuned by molecular chemistry and packing, opening new opportunities for the realization of technologically useful piezoelectric devices from renewable materials. The amino acids predicted to exhibit the highest piezoelectric response, such as glycine, hydroxyproline and lysine, are anticipated to be used to engineer highly piezoelectric peptides in the future. With improved scaling of advanced computational methods, such as density functional perturbation theory, the research community can begin to efficiently screen peptide structures for enhanced electromechanical properties. This capability will accelerate the experimental development of devices and provide much-needed insight into the evolution of a hierarchical relation in biological materials starting from strongly piezoelectric building blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1233330完成签到 ,获得积分10
4秒前
打打应助家立诚采纳,获得10
5秒前
7秒前
小黄完成签到,获得积分10
8秒前
什么也难不倒我完成签到 ,获得积分10
9秒前
9秒前
9秒前
聪慧语山完成签到 ,获得积分10
10秒前
豆⑧发布了新的文献求助10
11秒前
139完成签到 ,获得积分0
11秒前
12秒前
852应助小丫头采纳,获得10
12秒前
14秒前
15秒前
16秒前
yujx发布了新的文献求助10
19秒前
Andorchid完成签到,获得积分10
20秒前
科研通AI5应助Hui采纳,获得10
20秒前
慕青应助老夫子采纳,获得10
21秒前
21秒前
旧梦如烟发布了新的文献求助10
21秒前
guangshuang发布了新的文献求助10
21秒前
xiongqi完成签到 ,获得积分10
22秒前
吾问无为谓完成签到,获得积分20
22秒前
科研通AI2S应助asdfqwer采纳,获得10
26秒前
27秒前
qi完成签到,获得积分10
27秒前
28秒前
30秒前
32秒前
老夫子完成签到,获得积分10
32秒前
欧阳静芙完成签到,获得积分10
33秒前
小丫头发布了新的文献求助10
33秒前
ganzhongxin完成签到,获得积分10
33秒前
夏侯德东完成签到,获得积分10
33秒前
科研通AI2S应助asdfqwer采纳,获得10
33秒前
科研通AI5应助yujx采纳,获得10
34秒前
34秒前
呼呼呼等风来完成签到,获得积分10
35秒前
老夫子发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734