亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

P2‐441: CHARACTERIZING STRUCTURAL BRAIN ALTERATIONS IN ALZHEIMER'S DISEASE PATIENTS WITH MACHINE LEARNING

人工智能 支持向量机 机器学习 朴素贝叶斯分类器 人类连接体项目 线性判别分析 计算机科学 医学 模式识别(心理学) 心理学 神经科学 功能连接
作者
Gyujoon Hwang
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:14 (7S_Part_16)
标识
DOI:10.1016/j.jalz.2018.06.1133
摘要

There is large interest in the early diagnosis of Alzheimer's disease (AD) using machine learning. The NIH-sponsored Alzheimer's Disease Connectome Project (ADCP), a multi-center MRI, PET, and behavioral study of brain connectivity in AD, has a specific aim of accurately staging AD throughout its progression on an individual basis. It uses state-of-the-art MRI imaging techniques which allow for building reliable machine learning models. In this ongoing project, we are training models with the MRI structural brain features to separate between healthy controls and a group of AD and mild cognitive impairment (MCI) patients. Data from 12 patients (age=70.8±6.6 years, 7 males, 4 AD patients), and 20 healthy controls (age=68.9±6.2 years, 11 males), enrolled in ADCP, were analyzed. The two groups matched in age (p=0.45) and gender ratio (p=0.85). All images were acquired with 3T GE 750 scanners. T1-weighted images were acquired using a magnetization prepared gradient echo sequence (TR/TE=604ms/2.516ms, 0.8mm isotropic). Data were pre-processed using FreeSurfer-based Human Connectome Project (HCP) processing pipelines. 269 structural features were extracted, which include cortical thicknesses, surface areas, and subcortical and global volumes. They were normalized with the individual intracranial volume and then with the standardized z-score transform. 3 traditional binary classification machine learning models were trained in Matlab: support vector machine (SVM), linear discriminant analysis (LDA), and naïve Bayes (NB) classifiers. We applied a t-test based filter selection method, where only a group of features with the largest group mean differences in the training set enters the training. For performance estimation, we used leave-one-out cross validation (LOOCV) and the area-under-the-curve (AUC). SVM model classified the two groups with 90.6% accuracy (sensitivity=83.3%, specificity=95.0%, AUC=0.78, 23 features). NB model reached 84.38% (sensitivity=83.3%, specificity=85.0%, AUC=0.83, 10 features). Bilateral temporal pole volumes and right entorhinal volume were the most discriminating feautres. Linear traditional machine learning models were able to separate between AD/MCI patients and healthy controls with mid-80 to 90% accuracy. This is promising as it is known that non-linear, deep learning methods will outperform these traditional models given more data in the future. Building an automated model to classify Alzheimer's patients is expected to aid early diagnosis . A t-test based filter selection method was used to let only a certain number of features with the most group difference to be used in the training. SVM reached the highest LOOCV accuracy at 90.6% using 23 features. Bilateral temporal pole volumes showed the most group differences and helped machine learning separate the two groups. The volumes are noticeably reduced in MCI and AD patients compared to the healthy controls.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
哈哈哈哈完成签到 ,获得积分10
23秒前
洞两发布了新的文献求助10
27秒前
科研通AI6应助烛夜黎采纳,获得10
42秒前
43秒前
洞两发布了新的文献求助10
45秒前
137完成签到,获得积分20
1分钟前
1分钟前
1分钟前
科研通AI6应助emnjkl采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
烛夜黎发布了新的文献求助10
2分钟前
顾矜应助烛夜黎采纳,获得10
2分钟前
3分钟前
3分钟前
科研通AI6应助lulu采纳,获得10
3分钟前
科研通AI6应助lulu采纳,获得10
3分钟前
科研通AI6应助lulu采纳,获得10
3分钟前
科研通AI6应助lulu采纳,获得10
3分钟前
啦啦啦啦啦完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
ALpha发布了新的文献求助10
4分钟前
4分钟前
真实的瑾瑜完成签到 ,获得积分10
4分钟前
4分钟前
ALpha完成签到,获得积分10
4分钟前
4分钟前
科研小白菜完成签到,获得积分10
4分钟前
GL发布了新的文献求助10
4分钟前
4分钟前
4分钟前
聪明怜阳发布了新的文献求助10
4分钟前
orixero应助GL采纳,获得30
4分钟前
blenx完成签到,获得积分10
4分钟前
4分钟前
ZBQ发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442