Deep Learning Coordinate-Free Quantum Chemistry

计算机科学 量子计算机 图形 计算 理论计算机科学 量子 深度学习 量子化学 统计物理学 生物系统 分子 人工智能 算法 量子力学 物理 生物 超分子化学
作者
Matthew K. Matlock,Max Hoffman,Na Le Dang,Dakota Folmsbee,Luke Langkamp,Geoffrey Hutchison,Neeraj Kumar,Kathryn Sarullo,S. Joshua Swamidass
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:125 (40): 8978-8986 被引量:5
标识
DOI:10.1021/acs.jpca.1c04462
摘要

Computing quantum chemical properties of small molecules and polymers can provide insights valuable into physicists, chemists, and biologists when designing new materials, catalysts, biological probes, and drugs. Deep learning can compute quantum chemical properties accurately in a fraction of time required by commonly used methods such as density functional theory. Most current approaches to deep learning in quantum chemistry begin with geometric information from experimentally derived molecular structures or pre-calculated atom coordinates. These approaches have many useful applications, but they can be costly in time and computational resources. In this study, we demonstrate that accurate quantum chemical computations can be performed without geometric information by operating in the coordinate-free domain using deep learning on graph encodings. Coordinate-free methods rely only on molecular graphs, the connectivity of atoms and bonds, without atom coordinates or bond distances. We also find that the choice of graph-encoding architecture substantially affects the performance of these methods. The structures of these graph-encoding architectures provide an opportunity to probe an important, outstanding question in quantum mechanics: what types of quantum chemical properties can be represented by local variable models? We find that Wave, a local variable model, accurately calculates the quantum chemical properties, while graph convolutional architectures require global variables. Furthermore, local variable Wave models outperform global variable graph convolution models on complex molecules with large, correlated systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ding应助jeesy采纳,获得10
4秒前
zxxx完成签到,获得积分10
4秒前
ayuanpf应助稳重的安萱采纳,获得50
4秒前
4秒前
泠渊虚月发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
7秒前
7秒前
huche应助刻苦东蒽采纳,获得10
9秒前
小燕完成签到 ,获得积分10
10秒前
好大一个赣宝完成签到,获得积分10
10秒前
11秒前
李爱国应助泥嚎采纳,获得10
11秒前
11秒前
魏淑芬发布了新的文献求助10
12秒前
研友_CCQ_M完成签到,获得积分10
12秒前
saluo发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
mu完成签到,获得积分10
17秒前
Greta完成签到,获得积分10
18秒前
xixi完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
zhan完成签到,获得积分10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
23秒前
Akim应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
Troyelm应助科研通管家采纳,获得10
23秒前
打卡下班应助科研通管家采纳,获得20
23秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4082759
求助须知:如何正确求助?哪些是违规求助? 3622015
关于积分的说明 11490643
捐赠科研通 3336959
什么是DOI,文献DOI怎么找? 1834469
邀请新用户注册赠送积分活动 903328
科研通“疑难数据库(出版商)”最低求助积分说明 821538