Achieving fast hydrogenation by hydrogen-induced phase separation in Mg-based amorphous alloys

无定形固体 非晶态金属 材料科学 结晶 氢气储存 化学工程 相(物质) 熔融纺丝 脱氢 结晶学 冶金 合金 催化作用 化学 有机化学 复合材料 纺纱 工程类
作者
L. J. Huang,Han Wang,Liuzhang Ouyang,D.L. Sun,Huaijun Lin,M. Zhu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:887: 161476-161476 被引量:17
标识
DOI:10.1016/j.jallcom.2021.161476
摘要

Mg-based amorphous alloys are one of the potential hydrogen storage materials. The challenges which are blocking application of such alloys involve unfavorable crystallization of amorphous phase in hydrogenation and dehydrogenation and sluggish low-temperature de/hydrogenation kinetics. To solve those challenges, the Mg60RExNi30−xCu10 (RE=La and Ce; x = 5, 7.5, 10 and 15) amorphous alloys were prepared by melt spinning and the structural transformation of amorphous phase and its correlation to hydrogenation kinetics has been investigated. It is observed that all the amorphous powders are able to absorb more than 3.0 wt%-H at 130 °C under 4.5 MPa-H2, and the hydrogen absorption rate of the Mg60RE10Ni20Cu10 amorphous alloys is much faster than other alloys by forming a dual amorphous phase structure during hydrogenation. XRD characterization of Mg60Ce10Ni20Cu10 hydrides proved that such dual amorphous phase structure is resulted by hydrogen-induced amorphous phase separation. According to EDX results, the dual amorphous phase structure consists of Ce-rich and Ni-Cu-rich domains with a size of about 5 nm which gradually form by element aggregation during hydrogen absorption. Meanwhile, it is also confirmed that the element aggregation is the precursor of hydrogen-induced crystallization as crystallization is observed in the Ni–Cu-rich domain. It is verified that the hydrogen-induced amorphous phase separation of the Mg-based amorphous alloys is tunable and can be used for obtaining superior hydrogenation performance. The hydrogen-induced structural evolution revealed in this work might inspire the development of new Mg-based hydrogen storage amorphous alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助吴小胖采纳,获得10
刚刚
小二郎应助AgnesT采纳,获得30
1秒前
zhy完成签到,获得积分10
2秒前
老实难敌完成签到,获得积分20
2秒前
鄂海菡完成签到,获得积分10
2秒前
浮浮世世发布了新的文献求助30
3秒前
牛牛超人发布了新的文献求助10
4秒前
zhy发布了新的文献求助30
4秒前
4秒前
叮咚完成签到 ,获得积分10
5秒前
5秒前
Fanieyim应助慕雨倾欣采纳,获得10
7秒前
bkagyin应助慕雨倾欣采纳,获得10
7秒前
solitude完成签到,获得积分20
8秒前
老实难敌发布了新的文献求助10
8秒前
搜集达人应助吉吉国王采纳,获得10
8秒前
Jarvis完成签到,获得积分10
8秒前
10秒前
10秒前
12秒前
guozizi完成签到,获得积分10
13秒前
NexusExplorer应助lht采纳,获得10
14秒前
明亮豆芽完成签到 ,获得积分10
15秒前
牛牛超人完成签到,获得积分10
15秒前
若冰完成签到,获得积分10
15秒前
15秒前
15秒前
林炎完成签到,获得积分10
17秒前
玖玖发布了新的文献求助10
18秒前
19秒前
灭霸完成签到,获得积分10
20秒前
920713712发布了新的文献求助10
22秒前
善学以致用应助泡泡啰叽采纳,获得10
24秒前
研友_8KeJRn应助浅暖采纳,获得10
24秒前
25秒前
Csy发布了新的文献求助10
25秒前
26秒前
Zoe完成签到,获得积分10
27秒前
28秒前
老实难敌发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147719
求助须知:如何正确求助?哪些是违规求助? 3684352
关于积分的说明 11640733
捐赠科研通 3378235
什么是DOI,文献DOI怎么找? 1853991
邀请新用户注册赠送积分活动 916356
科研通“疑难数据库(出版商)”最低求助积分说明 830271