Delve into the Performance Degradation of Differentiable Architecture Search

过度拟合 计算机科学 正规化(语言学) 降级(电信) 集合(抽象数据类型) 可微函数 人工智能 一般化 机器学习 数学优化 人工神经网络 数学 电信 数学分析 程序设计语言
作者
Jiuling Zhang,Zhiming Ding
标识
DOI:10.1145/3459637.3482248
摘要

Differentiable architecture search (DARTS) is widely considered to be easy to overfit the validation set which leads to performance degradation. We first employ a series of exploratory experiments to verify that neither high-strength architecture parameters regularization nor warmup training scheme can effectively solve this problem. Based on the insights from the experiments, we conjecture that the performance of DARTS does not depend on the well-trained supernet weights and argue that the architecture parameters should be trained by the gradients which are obtained in the early stage rather than the final stage of training. This argument is then verified by exchanging the learning rate schemes of weights and parameters. Experimental results show that the simple swap of the learning rates can effectively solve the degradation and achieve competitive performance. Further empirical evidence suggests that the degradation is not a simple problem of the validation set overfitting but exhibit some links between the degradation and the operation selection bias within bilevel optimization dynamics. We demonstrate the generalization of this bias and propose to utilize this bias to achieve an operation-magnitude-based selective stop.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FODCOC发布了新的文献求助110
刚刚
出口成章完成签到,获得积分10
刚刚
忧郁的夏岚完成签到,获得积分10
1秒前
耳朵暴富富完成签到 ,获得积分10
2秒前
Faye完成签到 ,获得积分10
2秒前
wuha完成签到,获得积分10
2秒前
安州不烦心完成签到,获得积分10
3秒前
国服懒羊羊完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得30
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Owen应助羊青丝采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
8秒前
11秒前
fareless完成签到 ,获得积分10
12秒前
sonne应助花卷采纳,获得10
13秒前
星辰大海应助天真千易采纳,获得10
15秒前
Sylvia_J完成签到 ,获得积分10
17秒前
Lucas应助qiulong采纳,获得10
20秒前
大个应助俭朴的期待采纳,获得10
24秒前
wise111发布了新的文献求助10
25秒前
凤兮完成签到 ,获得积分10
26秒前
安东晨晨完成签到,获得积分10
28秒前
29秒前
ZHOUZHEN完成签到,获得积分10
29秒前
Owen应助无限的隶采纳,获得10
31秒前
裴依菲发布了新的文献求助10
33秒前
Neuro_dan完成签到,获得积分0
33秒前
颜色发布了新的文献求助10
35秒前
sonne应助empty采纳,获得10
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451