[Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].

逻辑回归 医学 急性肾损伤 曼惠特尼U检验 曲线下面积 接收机工作特性 重采样 内科学 算法 数学
作者
Can Tang,J Q Li,Duo Xu,X B Liu,Wenyi Hou,K Y Lyu,Shujie Xiao,Zhezheng Xia
出处
期刊:PubMed 卷期号:34 (6): 343-348 被引量:18
标识
DOI:10.3760/cma.j.issn.1009-2587.2018.06.006
摘要

Objective: To build risk prediction models for acute kidney injury (AKI) in severely burned patients, and to compare the prediction performance of machine learning method and logistic regression model. Methods: The clinical data of 157 severely burned patients in August 2nd Kunshan factory aluminum dust explosion accident conforming to the inclusion criteria were collected. Patients suffering AKI within 90 days after admission were enrolled in group AKI, while the others were enrolled in non-AKI group. Single factor analysis was used to choose independent factors associated with AKI, including sex, age, admission time, features of basic injuries, initial score on admission, treatment condition, and mortality on post injury days 30, 60, and 90. Data were processed with Mann-Whitney U test, chi-square test, and Fisher's exact test. Variables with P<0.1 in single factor analysis and those with possible clinical significance were brought into the establishment of prediction model. Logistic regression and XGBoost machine learning algorithm were used to build the prediction model of AKI. The area under receiver operating characteristic curve (AUC) was calculated, and the sensitivity and specificity for optimal threshold value were also calculated for each model. Nonparametric resampling test was used to compare the significance of difference of AUC of the two models. Results: (1) Eighty-nine (56.7%) patients developed AKI within 90 days from admission. Compared with 68 patients in non-AKI group, 89 patients in group AKI were older (Z=-2.203, P<0.05), with larger total burn area and full-thickness burn area (Z=-5.200, -6.297, P<0.01), worse acute physical and chronic health evaluation (APACHE) Ⅱ score, abbreviated burn severity index score, and sequential organ failure assessment (SOFA) score on admission (Z=-7.485, -4.739, -4.590, P<0.01), higher occurrence rate of sepsis (χ(2)=33.087, P<0.01), higher rates of accepting tracheotomy, mechanical ventilation, and continuous renal replacement therapy (χ(2)=12.373, 17.201, 43.763, P<0.01), larger first excision area (Z=-2.191, P<0.05), and higher mortality on post injury days 30, 60, and 90 (χ(2)=7.483, 37.259, 45.533, P<0.01). There were no statistically significant differences in sex, open decompression, admission time, 24-hour fluid volume after admission, 48-hour fluid volume after admission, the first 24-hour urine volume, the second 24 hour urine volume, the first excision time, and inhalation injury (χ(2)=0.529, 3.318, Z=-1.746, -0.016, -1.199, -1.824, -0.625, -1.747, P>0.05). The rates of deep vein catheterization of patients in the two groups were both 100%. (2) There were twenty possible prediction variables for preliminary establishment of model according to the difference results of single factor analysis and clinical significance of variables. (3) The logistic regression prediction model had three variables: APACHE Ⅱ score [odds ratio (OR)=1.36, 95% confidence interval (CI)=1.20-1.53, P<0.001], sepsis (OR=2.63, 95% CI=0.90-7.66, P>0.05), and the first 24-hour urine volume (OR=0.71, 95% CI=0.50-1.01, P>0.05). The AUC of the logistic regression prediction model was 0.875 (95% CI=0.821-0.930), with the specificity and sensitivity of optimal threshold value 84.4% and 77.7%, respectively. (4) XGBoost machine learning model had seven main predictive variables: APACHE Ⅱ score, full-thickness burn area, 24-hour fluid volume after admission, sepsis, the first 24-hour urine volume, SOFA score, and 48-hour fluid volume after admission. The AUC of machine learning model was 0.920 (95% CI=0.879-0.962), higher than that of logistic regression model (P<0.001), with the specificity and sensitivity of optimal threshold value 89.7% and 82.0%, respectively. Conclusions: Sepsis and fluid resuscitation are two important predictive variables that can be intervened for AKI in severely burned patients. Machine learning method has a better performance and can provide more accurate prediction for individuals than logistic regression prediction model, and therefore has good clinical application prospect.目的: 构建严重烧伤患者发生急性肾损伤(AKI)的风险预测模型,比较机器学习和logistic回归模型的预测效能。 方法: 收集在"八二"昆山工厂铝粉尘爆炸事故中严重烧伤的符合入选标准的157例患者的临床资料。将入院90 d内发生AKI的患者纳入AKI组,其余患者纳入非AKI组。使用单因素分析筛选可能和AKI发生相关的因素,包括患者性别、年龄、入院耗时、基础伤情、入院初始评分、治疗情况以及伤后30、60、90 d病死率等指标。对数据行Mann-Whitney U检验、χ(2)检验、Fisher确切概率法检验。将单因素分析中P<0.1以及可能有临床意义的变量纳入预测模型的构建,分别采用logistic回归分析和XGBoost机器学习算法构建AKI预测模型。计算模型的受试者工作特征曲线下面积(AUC),以及最佳阈值下的敏感度、特异度。2个预测模型AUC差异的显著性检验采用非参数的重复采样方法。 结果: (1)患者中89例(56.7%)在入院90 d内发生了AKI。与非AKI组68例患者相比,AKI组89例患者的年龄更大(Z=-2.203,P<0.05),烧伤总面积和Ⅲ度烧伤面积更大(Z=-5.200、-6.297,P<0.01),入院时的急性生理与慢性健康评估Ⅱ(APACHEⅡ)评分、简明烧伤严重程度指数评分、序贯器官衰竭评估(SOFA)评分更差(Z=-7.485、-4.739、-4.590,P<0.01),发生脓毒症的百分比更高(χ(2)=33.087,P<0.01),接受气管切开、呼吸机辅助呼吸以及连续性肾脏替代治疗的百分比更高(χ(2)=12.373、17.201、43.763,P<0.01),首次切痂面积更大(Z=-2.191,P<0.05),伤后30、60、90 d病死率更高(χ(2)=7.483、37.259、45.533,P<0.01)。2组患者的性别、切开减张、入院耗时、入院后24 h补液量、入院后48 h补液量、第1个24 h尿量、第2个24 h尿量、首次切痂时间、吸入性损伤比较,差异无统计学意义(χ(2)=0.529、3.318,Z=-1.746、-0.016、-1.199、-1.824、-0.625、-1.747,P>0.05);深静脉置管率均为100%。(2)根据单因素分析的差异结果以及变量的临床意义,筛选出20个可能的预测自变量,供模型的初步构建。(3)logistic回归预测模型的自变量为APACHEⅡ评分(比值比为1.36,95%置信区间为1.20~1.53,P<0.001)、脓毒症(比值比为2.63,95%置信区间为0.90~7.66,P>0.05)及第1个24 h尿量(比值比为0.71,95%置信区间为0.50~1.01,P>0.05)。logistic回归分析构建预测模型的AUC为0.875(95%置信区间为0.821~0.930),最佳阈值下的特异度为84.4%、敏感度为77.7%。(4)XGBoost机器学习算法构建的模型有7个主要预测变量:APACHEⅡ评分、Ⅲ度烧伤面积、入院后24 h补液量、脓毒症、第1个24 h尿量、SOFA评分、入院后48 h补液量。机器学习算法构建预测模型的AUC为0.920(95%置信区间为0.879~0.962),比logistic回归分析构建模型更高(P<0.001),最佳阈值下的特异度为89.7%、敏感度为82.0%。 结论: 脓毒症和液体复苏情况是严重烧伤患者发生AKI的可干预的重要预测变量。机器学习模型预测严重烧伤患者发生AKI的性能较logistic回归预测模型更佳,能为患者提供更为精准的个体化预测,具有良好的临床应用前景。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
hyjcs完成签到,获得积分0
10秒前
一行白鹭完成签到 ,获得积分10
15秒前
充满怪兽的世界完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
logolush完成签到 ,获得积分10
31秒前
韩钰小宝完成签到 ,获得积分10
31秒前
benzene完成签到 ,获得积分10
39秒前
apckkk完成签到 ,获得积分10
40秒前
田様应助斯文的傲珊采纳,获得30
47秒前
糖宝完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
53秒前
智智完成签到 ,获得积分10
56秒前
zhangxinan完成签到,获得积分10
57秒前
学好久完成签到 ,获得积分10
58秒前
coco完成签到,获得积分10
1分钟前
洸彦完成签到 ,获得积分10
1分钟前
缓慢的豌豆完成签到 ,获得积分10
1分钟前
活泼的烙完成签到 ,获得积分10
1分钟前
chen完成签到 ,获得积分10
1分钟前
小美酱完成签到 ,获得积分0
1分钟前
多克特里完成签到 ,获得积分10
1分钟前
自觉石头完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zenabia完成签到 ,获得积分10
1分钟前
JKbrown完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
zhang5657完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
tkbxa完成签到 ,获得积分10
1分钟前
hanliulaixi完成签到 ,获得积分10
1分钟前
柑橘乌云完成签到 ,获得积分10
1分钟前
feimengxia完成签到 ,获得积分10
1分钟前
chenting完成签到 ,获得积分10
2分钟前
roundtree完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
曾建完成签到 ,获得积分10
2分钟前
科研通AI5应助养猪不带瓢采纳,获得10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868049
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667112
捐赠科研通 3134498
什么是DOI,文献DOI怎么找? 1729156
邀请新用户注册赠送积分活动 833184
科研通“疑难数据库(出版商)”最低求助积分说明 780620