Motor imagery recognition in electroencephalograms using convolutional neural networks

脑-机接口 运动表象 人工智能 计算机科学 脑电图 模式识别(心理学) 格拉米安矩阵 隐马尔可夫模型 卷积神经网络 领域(数学) 信号(编程语言) 语音识别 计算机视觉 数学 心理学 神经科学 量子力学 程序设计语言 纯数学 特征向量 物理
作者
А. Д. Брагин,В.Г. Спицын
出处
期刊:Computer Optics [Samara National Research University]
卷期号:44 (3) 被引量:5
标识
DOI:10.18287/2412-6179-co-669
摘要

Electroencephalography is a widespread method to record brain signals with the use of electrodes located on the surface of the head. This method of recording the brain activity has become popular because it is relatively cheap, compact, and does not require implanting the electrodes directly into the brain. The article is devoted to a problem of recognition of motor imagery by electroencephalogram signals. The nature of such signals is complex. Characteristics of electroencephalograms are individual for every person, also depending on their age and mental state, as well as the presence of noise and interference. The multitude of these parameters should be taken into account when analyzing encephalograms. Artificial neural networks are a good tool for solving this class of problems. Their application allows combining the tasks of extracting, selecting and classifying features in one signal processing unit. Electroencephalograms are time signals and we note that Gramian Angular Fields and Markov Transition Field transforms are used to represent time series in the form of images. The article shows the possibility of using the Gramian Angular Fields and Markov Transition Field transformations of the electroencephalogram (EEG) signal for motor imagery recognition using examples of imaginary movements with the right and left hand, also studying the effect of the resolution of Gramian Angular Fields and Markov Transition Field images on the classification accuracy. The best classification accuracy of the EEG signal into the motion and state-of-rest classes is about 99%. In future, the research results can be applied in constructing the brain-computer interface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Sugar发布了新的文献求助10
2秒前
3秒前
Z6745完成签到,获得积分10
5秒前
6秒前
Cris发布了新的文献求助10
7秒前
wanci应助布隆的保龄球采纳,获得10
7秒前
大模型应助yyauthor采纳,获得10
7秒前
8秒前
SciGPT应助妄想天使采纳,获得10
9秒前
9秒前
rouqu发布了新的文献求助10
10秒前
兰粥拉面完成签到,获得积分10
10秒前
11秒前
我是老大应助小斗采纳,获得10
12秒前
12秒前
南川完成签到,获得积分10
12秒前
13秒前
大个应助Sugar采纳,获得10
13秒前
14秒前
ANNNNNN完成签到,获得积分10
14秒前
屹舟发布了新的文献求助10
15秒前
lemon完成签到 ,获得积分10
16秒前
16秒前
17秒前
胡图图完成签到 ,获得积分10
17秒前
18秒前
Allen发布了新的文献求助10
18秒前
18秒前
浮游应助高高采纳,获得10
18秒前
苒苒发布了新的文献求助60
18秒前
花凉发布了新的文献求助10
19秒前
pgh.hh完成签到 ,获得积分10
20秒前
慕青应助rouqu采纳,获得10
20秒前
20秒前
丘比特应助zy采纳,获得10
22秒前
芝士土豆妮关注了科研通微信公众号
23秒前
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194483
求助须知:如何正确求助?哪些是违规求助? 4376780
关于积分的说明 13630148
捐赠科研通 4231820
什么是DOI,文献DOI怎么找? 2321248
邀请新用户注册赠送积分活动 1319410
关于科研通互助平台的介绍 1269763