Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion

计算机科学 人工智能 图像融合 特征学习 特征(语言学) 模式识别(心理学) 深度学习 集成学习 图像(数学) GSM演进的增强数据速率 融合 比例(比率) 计算机视觉 机器学习 哲学 物理 量子力学 语言学
作者
Jinyuan Liu,Xin Fan,Ji Jiang,Risheng Liu,Zhongxuan Luo
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 105-119 被引量:237
标识
DOI:10.1109/tcsvt.2021.3056725
摘要

Image fusion integrates a series of images acquired from different sensors, e.g. , infrared and visible, outputting an image with richer information than either one. Traditional and recent deep-based methods have difficulties in preserving prominent structures and recovering vital textural details for practical applications. In this article, we propose a deep network for infrared and visible image fusion cascading a feature learning module with a fusion learning mechanism. Firstly, we apply a coarse-to-fine deep architecture to learn multi-scale features for multi-modal images, which enables discovering prominent common structures for later fusion operations. The proposed feature learning module requires no well-aligned image pairs for training. Compared with the existing learning-based methods, the proposed feature learning module can ensemble numerous examples from respective modals for training, increasing the ability of feature representation. Secondly, we design an edge-guided attention mechanism upon the multi-scale features to guide the fusion focusing on common structures, thus recovering details while attenuating noise. Moreover, we provide a new aligned infrared and visible image fusion dataset, RealStreet, collected in various practical scenarios for comprehensive evaluation. Extensive experiments on two benchmarks, TNO and RealStreet, demonstrate the superiority of the proposed method over the state-of-the-art in terms of both visual inspection and objective analysis on six evaluation metrics. We also conduct the experiments on the FLIR and NIR datasets, containing foggy weather and poor light conditions, to verify the generalization and robustness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sonder完成签到 ,获得积分10
3秒前
3秒前
3秒前
亮liang发布了新的文献求助10
4秒前
Minzy发布了新的文献求助10
4秒前
Chroninus完成签到,获得积分10
8秒前
青岚完成签到,获得积分10
8秒前
8秒前
9秒前
怡然的梦之完成签到 ,获得积分10
9秒前
11秒前
12秒前
Minzy完成签到,获得积分10
13秒前
I Think完成签到,获得积分10
14秒前
14秒前
学徒徒完成签到,获得积分10
16秒前
haha发布了新的文献求助10
16秒前
aabb发布了新的文献求助10
17秒前
倪倪完成签到,获得积分10
17秒前
19秒前
wushangyu发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
kk99123应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
kk99123应助科研通管家采纳,获得10
21秒前
21秒前
yar应助科研通管家采纳,获得10
21秒前
24秒前
25秒前
Nidhogg完成签到,获得积分10
25秒前
wushangyu完成签到,获得积分10
27秒前
小蘑菇应助HuiJN采纳,获得10
28秒前
29秒前
丘比特应助shimmy采纳,获得20
29秒前
jinju发布了新的文献求助10
31秒前
小蘑菇应助阮绝悟采纳,获得10
31秒前
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4096990
求助须知:如何正确求助?哪些是违规求助? 3634634
关于积分的说明 11521379
捐赠科研通 3345150
什么是DOI,文献DOI怎么找? 1838434
邀请新用户注册赠送积分活动 906081
科研通“疑难数据库(出版商)”最低求助积分说明 823421