Remote sensing image classification using subspace sensor fusion

计算机科学 高光谱成像 多光谱图像 人工智能 土地覆盖 激光雷达 模式识别(心理学) 遥感 传感器融合 子空间拓扑 遥感应用 保险丝(电气) 随机森林 数据挖掘 分类器(UML) 土地利用 地理 土木工程 电气工程 工程类
作者
Behnood Rasti,Pedram Ghamisi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:64: 121-130 被引量:65
标识
DOI:10.1016/j.inffus.2020.07.002
摘要

Abstract The amount of remote sensing and ancillary datasets captured by diverse airborne and spaceborne sensors has been tremendously increased, which opens up the possibility of utilizing multimodal datasets to improve the performance of processing approaches with respect to the application at hand. However, developing a generic framework with high generalization capability that can effectively fuse diverse datasets is a challenging task since the current approaches are usually only applicable to two specific sensors for data fusion. In this paper, we propose an accurate fusion-based technique called SubFus with capability to integrate diverse remote sensing data for land cover classification. Here, we assume that a high dimensional multisensor dataset can be represented fused features that live in a lower-dimensional space. The proposed classification methodology includes three main stages. First, spatial information is extracted by using spatial filters (i.e., morphology filters). Then, a novel low-rank minimization problem is proposed to represent the multisensor datasets in subspaces using fused features. The fused features in the lower-dimensional subspace are estimated using a novel iterative algorithm based on the alternative direction method of multipliers. Third, the final classification map is produced by applying a supervised spectral classifier (i.e., random forest) on the fused features. In the experiments, the proposed method is applied to a three-sensor (RGB, multispectral LiDAR, and hyperspectral images) dataset captured over the area of the University of Houston, the USA, and a two-sensor (hyperspectral and LiDAR) dataset captured over the city of Trento, Italy. The land-cover maps generated using SubFus are evaluated based on classification accuracies. Experimental results obtained by SubFus confirm considerable improvements in terms of classification accuracies compared with the other methods used in the experiments. The proposed fusion approach obtains 85.32% and 99.25% in terms of overall classification accuracy on the Houston (the training portion of the dataset distributed for the data fusion contest of 2018) and trento datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重雁易发布了新的文献求助10
刚刚
今后应助小城故事和冰雨采纳,获得10
1秒前
2秒前
大模型应助xxxsonrie采纳,获得10
2秒前
tt发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
傲娇的又晴应助sks采纳,获得30
4秒前
4秒前
4秒前
5秒前
5秒前
Ava应助Liu采纳,获得10
5秒前
冥冥之极为昭昭应助woshiyy采纳,获得10
6秒前
彩色石头完成签到,获得积分10
6秒前
思源应助xx采纳,获得10
7秒前
可一可再完成签到,获得积分10
7秒前
刘鹏宇发布了新的文献求助10
8秒前
天道酬勤发布了新的文献求助10
9秒前
Rondab应助屿杓采纳,获得10
9秒前
9秒前
没有逗发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
MabelKKKK完成签到,获得积分10
11秒前
11秒前
丘比特应助tt采纳,获得10
12秒前
wangzian发布了新的文献求助200
12秒前
CipherSage应助Russell采纳,获得30
12秒前
13秒前
小春完成签到,获得积分10
15秒前
酷波er应助花痴的绿真采纳,获得10
15秒前
16秒前
16秒前
郭团团发布了新的文献求助10
17秒前
komorebi发布了新的文献求助10
17秒前
17秒前
18秒前
冉徐凤完成签到,获得积分10
18秒前
飞鸟完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005087
求助须知:如何正确求助?哪些是违规求助? 3544982
关于积分的说明 11292047
捐赠科研通 3281342
什么是DOI,文献DOI怎么找? 1809644
邀请新用户注册赠送积分活动 885374
科研通“疑难数据库(出版商)”最低求助积分说明 810888