光伏
量子点
双层
材料科学
太阳能电池
光电子学
多激子产生
纳米技术
胶体
吸收(声学)
电子
化学工程
光伏系统
化学
物理
膜
生态学
生物化学
复合材料
工程类
生物
量子力学
作者
Ahmad R. Kirmani,Flurin Eisner,Ahmed E. Mansour,Yuliar Firdaus,Neha Chaturvedi,Akmaral Seitkhan,Mohamad Insan Nugraha,Emre Yarali,F. Pelayo Garcı́a de Arquer,Edward H. Sargent,Thomas D. Anthopoulos,Aram Amassian
标识
DOI:10.1021/acsaem.0c00831
摘要
Solution-processed colloidal quantum dot (CQD) photovoltaics (PVs) continue to mature with improvements in device architectures and ligand exchange strategies. Carrier selective contacts extract photogenerated charge carriers from the CQD absorber; however, the role of the electron-transporting layer (ETL) in stability remains unclear. Herein, we find that the typically used >100 nm thick ZnO ETL suffers from parasitic absorption and carrier recombination resulting in unstable n–i–p solar cells with faster UV-degradation. We address this by developing an ultrathin (ca. 20 nm), quantum-confined, solution-processed In2O3/ZnO ETL. This bilayer ETL results in solar cells with significantly improved overall stability without compromising performance, with an 11.1% power conversion efficiency hero device.
科研通智能强力驱动
Strongly Powered by AbleSci AI