Development and Validation of a Deep Learning Model for Non–Small Cell Lung Cancer Survival

医学 肺癌 四分位间距 腺癌 转移 内科学 队列 人口 癌症 计算机科学 深度学习 人工智能 肿瘤科 机器学习 生存分析 环境卫生
作者
Yunlang She,Zhuochen Jin,Junqi Wu,Jiajun Deng,Lei Zhang,Hang Su,Gening Jiang,Haipeng Liu,Dong Xie,Nan Cao,Yijiu Ren,Chang Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (6): e205842-e205842 被引量:207
标识
DOI:10.1001/jamanetworkopen.2020.5842
摘要

Importance

There is a lack of studies exploring the performance of a deep learning survival neural network in non–small cell lung cancer (NSCLC).

Objectives

To compare the performances of DeepSurv, a deep learning survival neural network with a tumor, node, and metastasis staging system in the prediction of survival and test the reliability of individual treatment recommendations provided by the deep learning survival neural network.

Design, Setting, and Participants

In this population-based cohort study, a deep learning–based algorithm was developed and validated using consecutive cases of newly diagnosed stages I to IV NSCLC between January 2010 and December 2015 in a Surveillance, Epidemiology, and End Results database. A total of 127 features, including patient characteristics, tumor stage, and treatment strategies, were assessed for analysis. The algorithm was externally validated on an independent test cohort, comprising 1182 patients with stage I to III NSCLC diagnosed between January 2009 and December 2013 in Shanghai Pulmonary Hospital. Analysis began January 2018 and ended June 2019.

Main Outcomes and Measures

The deep learning survival neural network model was compared with the tumor, node, and metastasis staging system for lung cancer–specific survival. The C statistic was used to assess the performance of models. A user-friendly interface was provided to facilitate the survival predictions and treatment recommendations of the deep learning survival neural network model.

Results

Of 17 322 patients with NSCLC included in the study, 13 361 (77.1%) were white and the median (interquartile range) age was 68 (61-74) years. The majority of tumors were stage I disease (10 273 [59.3%]) and adenocarcinoma (11 985 [69.2%]). The median (interquartile range) follow-up time was 24 (10-43) months. There were 3119 patients who had lung cancer–related death during the follow-up period. The deep learning survival neural network model showed more promising results in the prediction of lung cancer–specific survival than the tumor, node, and metastasis stage on the test data set (C statistic = 0.739 vs 0.706). The population who received the recommended treatments had superior survival rates than those who received treatments not recommended (hazard ratio, 2.99; 95% CI, 2.49-3.59;P < .001), which was verified by propensity score–matched groups. The deep learning survival neural network model visualization was realized by a user-friendly graphic interface.

Conclusions and Relevance

The deep learning survival neural network model shows potential benefits in prognostic evaluation and treatment recommendation with respect to lung cancer–specific survival. This novel analytical approach may provide reliable individual survival information and treatment recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏xia完成签到,获得积分10
刚刚
聖璕完成签到,获得积分10
1秒前
忆之完成签到,获得积分10
2秒前
在水一方应助上下采纳,获得10
2秒前
kdqiu完成签到,获得积分10
2秒前
Kenina完成签到,获得积分10
3秒前
wangyy65完成签到 ,获得积分10
3秒前
3秒前
3秒前
福叔完成签到,获得积分10
3秒前
落寞太阳完成签到,获得积分10
3秒前
板栗完成签到,获得积分10
4秒前
llllzzh完成签到 ,获得积分10
4秒前
为科研奋斗完成签到,获得积分10
4秒前
xiaxiao应助科研通管家采纳,获得100
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
花Cheung完成签到,获得积分10
5秒前
拉拉完成签到,获得积分10
5秒前
Seth完成签到,获得积分10
6秒前
欢喜小蚂蚁完成签到 ,获得积分10
6秒前
AI完成签到,获得积分10
7秒前
chris完成签到,获得积分10
7秒前
小雨完成签到,获得积分10
9秒前
哭泣恋风完成签到 ,获得积分10
9秒前
Owen应助落寞太阳采纳,获得10
10秒前
hhh完成签到,获得积分10
10秒前
cc完成签到,获得积分10
10秒前
未相遇的辣条完成签到,获得积分20
11秒前
开心向真完成签到,获得积分10
11秒前
简单刺猬完成签到,获得积分10
11秒前
guo完成签到,获得积分10
12秒前
飞云发布了新的文献求助10
13秒前
mujianhua完成签到 ,获得积分10
13秒前
hutian完成签到,获得积分10
13秒前
都会完成签到 ,获得积分10
13秒前
14秒前
wwewew完成签到,获得积分10
14秒前
搜集达人应助科研疯狗采纳,获得10
14秒前
lilei完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642