亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Deep Learning Model for Non–Small Cell Lung Cancer Survival

医学 肺癌 四分位间距 腺癌 转移 内科学 队列 人口 癌症 计算机科学 深度学习 人工智能 肿瘤科 机器学习 生存分析 环境卫生
作者
Yunlang She,Zhuochen Jin,Junqi Wu,Jiajun Deng,Lei Zhang,Hang Su,Gening Jiang,Haipeng Liu,Dong Xie,Nan Cao,Yijiu Ren,Chang Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (6): e205842-e205842 被引量:207
标识
DOI:10.1001/jamanetworkopen.2020.5842
摘要

Importance

There is a lack of studies exploring the performance of a deep learning survival neural network in non–small cell lung cancer (NSCLC).

Objectives

To compare the performances of DeepSurv, a deep learning survival neural network with a tumor, node, and metastasis staging system in the prediction of survival and test the reliability of individual treatment recommendations provided by the deep learning survival neural network.

Design, Setting, and Participants

In this population-based cohort study, a deep learning–based algorithm was developed and validated using consecutive cases of newly diagnosed stages I to IV NSCLC between January 2010 and December 2015 in a Surveillance, Epidemiology, and End Results database. A total of 127 features, including patient characteristics, tumor stage, and treatment strategies, were assessed for analysis. The algorithm was externally validated on an independent test cohort, comprising 1182 patients with stage I to III NSCLC diagnosed between January 2009 and December 2013 in Shanghai Pulmonary Hospital. Analysis began January 2018 and ended June 2019.

Main Outcomes and Measures

The deep learning survival neural network model was compared with the tumor, node, and metastasis staging system for lung cancer–specific survival. The C statistic was used to assess the performance of models. A user-friendly interface was provided to facilitate the survival predictions and treatment recommendations of the deep learning survival neural network model.

Results

Of 17 322 patients with NSCLC included in the study, 13 361 (77.1%) were white and the median (interquartile range) age was 68 (61-74) years. The majority of tumors were stage I disease (10 273 [59.3%]) and adenocarcinoma (11 985 [69.2%]). The median (interquartile range) follow-up time was 24 (10-43) months. There were 3119 patients who had lung cancer–related death during the follow-up period. The deep learning survival neural network model showed more promising results in the prediction of lung cancer–specific survival than the tumor, node, and metastasis stage on the test data set (C statistic = 0.739 vs 0.706). The population who received the recommended treatments had superior survival rates than those who received treatments not recommended (hazard ratio, 2.99; 95% CI, 2.49-3.59;P < .001), which was verified by propensity score–matched groups. The deep learning survival neural network model visualization was realized by a user-friendly graphic interface.

Conclusions and Relevance

The deep learning survival neural network model shows potential benefits in prognostic evaluation and treatment recommendation with respect to lung cancer–specific survival. This novel analytical approach may provide reliable individual survival information and treatment recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
qjd发布了新的文献求助10
9秒前
领导范儿应助qjd采纳,获得10
17秒前
qjd完成签到,获得积分10
26秒前
zsmj23完成签到 ,获得积分10
53秒前
鬼见愁应助科研通管家采纳,获得10
53秒前
53秒前
54秒前
左白易发布了新的文献求助10
1分钟前
1分钟前
左白易完成签到,获得积分10
1分钟前
1分钟前
蜂蜜公爵发布了新的文献求助60
1分钟前
FashionBoy应助XXXXzy采纳,获得30
1分钟前
2分钟前
XXXXzy发布了新的文献求助30
2分钟前
2分钟前
铉莉发布了新的文献求助10
2分钟前
雪白小丸子完成签到,获得积分10
3分钟前
研友_VZG7GZ应助XXXXzy采纳,获得30
3分钟前
3分钟前
4分钟前
XXXXzy发布了新的文献求助30
4分钟前
科研通AI5应助一一采纳,获得30
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
petrel完成签到,获得积分10
5分钟前
5分钟前
petrel发布了新的文献求助10
5分钟前
Ava应助许红采纳,获得10
5分钟前
5分钟前
许红完成签到,获得积分10
5分钟前
铉莉完成签到,获得积分20
5分钟前
许红发布了新的文献求助10
5分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
DDGD完成签到,获得积分10
6分钟前
xc发布了新的文献求助10
7分钟前
DDGD发布了新的文献求助10
7分钟前
wanci应助XXXXzy采纳,获得30
7分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111903
求助须知:如何正确求助?哪些是违规求助? 3650253
关于积分的说明 11559852
捐赠科研通 3355127
什么是DOI,文献DOI怎么找? 1843177
邀请新用户注册赠送积分活动 909262
科研通“疑难数据库(出版商)”最低求助积分说明 826175