Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs

卷积神经网络 学习迁移 深度学习 人工智能 医学 射线照相术 特征(语言学) 模式识别(心理学) 骨质疏松症 接收机工作特性 计算机科学 放射科 病理 语言学 内科学 哲学
作者
Ki Sun Lee,Seok-Ki Jung,Jae Jun Ryu,Sang Wan Shin,Jinwook Choi
出处
期刊:Journal of Clinical Medicine [MDPI AG]
卷期号:9 (2): 392-392 被引量:92
标识
DOI:10.3390/jcm9020392
摘要

Dental panoramic radiographs (DPRs) provide information required to potentially evaluate bone density changes through a textural and morphological feature analysis on a mandible. This study aims to evaluate the discriminating performance of deep convolutional neural networks (CNNs), employed with various transfer learning strategies, on the classification of specific features of osteoporosis in DPRs. For objective labeling, we collected a dataset containing 680 images from different patients who underwent both skeletal bone mineral density and digital panoramic radiographic examinations at the Korea University Ansan Hospital between 2009 and 2018. Four study groups were used to evaluate the impact of various transfer learning strategies on deep CNN models as follows: a basic CNN model with three convolutional layers (CNN3), visual geometry group deep CNN model (VGG-16), transfer learning model from VGG-16 (VGG-16_TF), and fine-tuning with the transfer learning model (VGG-16_TF_FT). The best performing model achieved an overall area under the receiver operating characteristic of 0.858. In this study, transfer learning and fine-tuning improved the performance of a deep CNN for screening osteoporosis in DPR images. In addition, using the gradient-weighted class activation mapping technique, a visual interpretation of the best performing deep CNN model indicated that the model relied on image features in the lower left and right border of the mandibular. This result suggests that deep learning-based assessment of DPR images could be useful and reliable in the automated screening of osteoporosis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡西的猫完成签到 ,获得积分10
1秒前
Davidjun完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
手可摘星辰完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
lfzw发布了新的文献求助10
4秒前
米团完成签到,获得积分10
4秒前
111发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
SciGPT应助A1skrim采纳,获得10
5秒前
5秒前
NexusExplorer应助摇摇七玺采纳,获得10
5秒前
WXY发布了新的文献求助10
6秒前
yangYR发布了新的文献求助10
6秒前
azaizzz完成签到,获得积分10
6秒前
小时候发布了新的文献求助10
6秒前
沐沐完成签到,获得积分20
6秒前
7秒前
wcu发布了新的文献求助10
7秒前
asl1994完成签到,获得积分10
7秒前
12281w应助wangjing11采纳,获得10
7秒前
7秒前
mjw要发一区完成签到,获得积分10
8秒前
8秒前
自然的清炎完成签到,获得积分10
8秒前
wuliweiwei完成签到,获得积分10
9秒前
9秒前
铁铁发布了新的文献求助10
9秒前
asl1994发布了新的文献求助10
10秒前
平平完成签到,获得积分20
10秒前
阿依咕噜完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430298
求助须知:如何正确求助?哪些是违规求助? 4543501
关于积分的说明 14187546
捐赠科研通 4461646
什么是DOI,文献DOI怎么找? 2446255
邀请新用户注册赠送积分活动 1437582
关于科研通互助平台的介绍 1414406