A New Structured Domain Adversarial Neural Network for Transfer Fault Diagnosis of Rolling Bearings Under Different Working Conditions

计算机科学 人工智能 判别式 人工神经网络 适应性 约束(计算机辅助设计) 参数统计 机器学习 断层(地质) 梯度下降 理论(学习稳定性) 熵(时间箭头) 深度学习 数据挖掘 模式识别(心理学) 工程类 数学 机械工程 生态学 统计 物理 量子力学 地震学 生物 地质学
作者
Wentao Mao,Yamin Liu,Ling Ding,Ali Safian,Xihui Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:78
标识
DOI:10.1109/tim.2020.3038596
摘要

This article presents a new deep transfer learning method, named structured domain adversarial neural network (SDANN), for bearing fault diagnosis with the data collected under different working conditions. The key idea of this method is integrating the strong adaptability of domain adversarial neural network (DANN) and structured relatedness information among multiple failure modes to improve the effect of transfer learning. First, for fine-grained alignment between the data collected from different working conditions, a new loss function with a discriminative regularizer is designed for DANN by using maximum correlation entropy constraint. Second, to improve the stability of DANN on an insufficient amount of data, a relatedness matrix is introduced, and a new regularizer with symmetry constraint on this matrix is designed to capture the intrinsic similarity structure among multiple fault types. Finally, a stochastic gradient descent optimization strategy is used to train the network and establish an end-to-end diagnostic model. Comparative experiments are conducted on two widely used bearing data sets. The results show that the proposed method has good diagnosis performance on insufficient monitoring data and outperforms several state-of-the-art transfer diagnosis methods and deep learning-based diagnosis methods in terms of diagnostic accuracy and numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
万能图书馆应助Steven采纳,获得10
2秒前
2秒前
demo1发布了新的文献求助10
2秒前
温暖向南发布了新的文献求助10
3秒前
4秒前
英俊的铭应助学术大佬采纳,获得10
4秒前
ZZ关闭了ZZ文献求助
4秒前
jj完成签到,获得积分10
4秒前
OxO完成签到,获得积分10
5秒前
当归完成签到,获得积分10
5秒前
调皮黑猫应助自由的舒克采纳,获得30
5秒前
5秒前
别不开星完成签到,获得积分10
6秒前
6秒前
赘婿应助猪猪hero采纳,获得10
6秒前
7秒前
7秒前
littlebear完成签到,获得积分10
7秒前
8秒前
lihuahui发布了新的文献求助10
8秒前
8秒前
zho发布了新的文献求助10
8秒前
9秒前
9秒前
223311完成签到,获得积分10
9秒前
drizzling完成签到,获得积分10
9秒前
Rollei发布了新的文献求助10
10秒前
金阿垚在科研应助HZ采纳,获得10
10秒前
yexyz发布了新的文献求助10
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790513
求助须知:如何正确求助?哪些是违规求助? 3335220
关于积分的说明 10273834
捐赠科研通 3051689
什么是DOI,文献DOI怎么找? 1674763
邀请新用户注册赠送积分活动 802841
科研通“疑难数据库(出版商)”最低求助积分说明 760907