卟啉
化学
光催化
分解水
金属有机骨架
联吡啶
光化学
催化作用
双层
脂质体
量子产额
光催化分解水
脂质双层
膜
组合化学
有机化学
吸附
物理
晶体结构
荧光
量子力学
生物化学
作者
Huihui Hu,Zhiye Wang,Lingyun Cao,Lingzhen Zeng,Cankun Zhang,Wenbin Lin,Cheng Wang
出处
期刊:Nature Chemistry
[Nature Portfolio]
日期:2021-02-15
卷期号:13 (4): 358-366
被引量:230
标识
DOI:10.1038/s41557-020-00635-5
摘要
Metal–organic frameworks (MOFs) have been studied extensively in the hydrogen evolution reaction (HER) and the water oxidation reaction (WOR) with sacrificial reagents, but overall photocatalytic water splitting using MOFs has remained challenging, principally because of the fast recombination of photo-generated electrons and holes. Here we have integrated HER- and WOR-MOF nanosheets into liposomal structures for separation of the generated charges. The HER-MOF nanosheets comprise light-harvesting Zn–porphyrin and catalytic Pt–porphyrin moieties, and are functionalized with hydrophobic groups to facilitate their incorporation into the hydrophobic lipid bilayer of the liposome. The WOR-MOF flakes consist of [Ru(2,2′-bipyridine)3]2+-based photosensitizers and Ir–bipyridine catalytic centres, and are localized in the hydrophilic interior of the liposome. This liposome–MOF assembly achieves overall photocatalytic water splitting with an apparent quantum yield of (1.5 ± 1)% as a result of ultrafast electron transport from the antennae (Zn–porphyrin and [Ru(2,2′-bipyridine)3]2+) to the reaction centres (Pt–porphyrin and Ir–bipyridine) in the MOFs and efficient charge separation in the lipid bilayers. Some metal–organic frameworks (MOFs) can promote photocatalytic hydrogen evolution and others can facilitate water oxidation, but it is difficult to combine them into a single system. Now, by confining MOFs that can promote each half-reaction within the hydrophobic and hydrophilic regions of a liposome to avoid the fast recombination of photo-generated charges, evidence for water splitting has been obtained.
科研通智能强力驱动
Strongly Powered by AbleSci AI