Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:147: 95-105 被引量:204
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Woodward完成签到,获得积分10
3秒前
4秒前
无花果应助gtpking采纳,获得10
4秒前
FeiBai发布了新的文献求助10
4秒前
郭濹涵发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
joshua完成签到,获得积分10
10秒前
科研通AI6.1应助lelee采纳,获得20
10秒前
11秒前
发篇四区就收手完成签到 ,获得积分10
11秒前
march应助ZepHyR采纳,获得10
12秒前
14秒前
慕青应助huang采纳,获得10
14秒前
乐乐应助方璇采纳,获得10
15秒前
serein完成签到 ,获得积分10
16秒前
感动凡雁发布了新的文献求助10
17秒前
yufanhui应助yonghu采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
Rocsoar发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
初一完成签到 ,获得积分10
23秒前
Bowman发布了新的文献求助30
24秒前
huang完成签到,获得积分10
27秒前
朝暮完成签到 ,获得积分10
28秒前
28秒前
小蘑菇应助古风采纳,获得10
30秒前
SheltonYang发布了新的文献求助10
31秒前
33秒前
活着完成签到,获得积分20
34秒前
35秒前
huang发布了新的文献求助10
35秒前
俭朴的跳跳糖完成签到 ,获得积分10
35秒前
36秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730846
求助须知:如何正确求助?哪些是违规求助? 5326003
关于积分的说明 15319863
捐赠科研通 4877109
什么是DOI,文献DOI怎么找? 2620078
邀请新用户注册赠送积分活动 1569362
关于科研通互助平台的介绍 1525898