Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:147: 95-105 被引量:152
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助比大家采纳,获得10
刚刚
3秒前
科研通AI2S应助LLL采纳,获得30
3秒前
完美世界应助小v的格洛米采纳,获得10
3秒前
4秒前
hui完成签到,获得积分10
8秒前
bingbingsha发布了新的文献求助10
8秒前
苏silence发布了新的文献求助10
10秒前
Helium发布了新的文献求助10
11秒前
11秒前
朴实的不悔完成签到,获得积分20
11秒前
辣椒完成签到,获得积分10
12秒前
hui发布了新的文献求助10
13秒前
天使的诱惑913完成签到 ,获得积分10
13秒前
14秒前
辣椒发布了新的文献求助10
16秒前
18秒前
小白发布了新的文献求助10
18秒前
完美世界应助有热心愿意采纳,获得10
18秒前
负责的归尘完成签到,获得积分10
19秒前
郭郭发布了新的文献求助10
19秒前
周文丽发布了新的文献求助10
20秒前
科研通AI5应助Cicy采纳,获得10
24秒前
kkkkkoi发布了新的文献求助20
24秒前
28秒前
28秒前
bernoulli完成签到,获得积分10
29秒前
laura发布了新的文献求助20
32秒前
imchenyin发布了新的文献求助10
33秒前
科研通AI5应助周文丽采纳,获得10
35秒前
36秒前
36秒前
kk完成签到,获得积分10
36秒前
36秒前
小白发布了新的文献求助10
36秒前
36秒前
科研通AI5应助bernoulli采纳,获得10
36秒前
38秒前
39秒前
西瓜完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440