MGAT: Multimodal Graph Attention Network for Recommendation

计算机科学 电影 模式 利用 二部图 图形 机器学习 推荐系统 人工智能 情报检索 稳健性(进化) 粒度 注意力网络 人机交互 理论计算机科学 协同过滤 操作系统 基因 社会学 化学 生物化学 计算机安全 社会科学
作者
Zhulin Tao,Yinwei Wei,Xiang Wang,Xiangnan He,Xianglin Huang,Tat‐Seng Chua
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:57 (5): 102277-102277 被引量:163
标识
DOI:10.1016/j.ipm.2020.102277
摘要

Graph neural networks (GNNs) have shown great potential for personalized recommendation. At the core is to reorganize interaction data as a user-item bipartite graph and exploit high-order connectivity among user and item nodes to enrich their representations. While achieving great success, most existing works consider interaction graph based only on ID information, foregoing item contents from multiple modalities (e.g., visual, acoustic, and textual features of micro-video items). Distinguishing personal interests on different modalities at a granular level was not explored until recently proposed MMGCN (Wei et al., 2019). However, it simply employs GNNs on parallel interaction graphs and treats information propagated from all neighbors equally, failing to capture user preference adaptively. Hence, the obtained representations might preserve redundant, even noisy information, leading to non-robustness and suboptimal performance. In this work, we aim to investigate how to adopt GNNs on multimodal interaction graphs, to adaptively capture user preference on different modalities and offer in-depth analysis on why an item is suitable to a user. Towards this end, we propose a new Multimodal Graph Attention Network, short for MGAT, which disentangles personal interests at the granularity of modality. In particular, built upon multimodal interaction graphs, MGAT conducts information propagation within individual graphs, while leveraging the gated attention mechanism to identify varying importance scores of different modalities to user preference. As such, it is able to capture more complex interaction patterns hidden in user behaviors and provide a more accurate recommendation. Empirical results on two micro-video recommendation datasets, Tiktok and MovieLens, show that MGAT exhibits substantial improvements over the state-of-the-art baselines like NGCF (Wang, He, et al., 2019) and MMGCN (Wei et al., 2019). Further analysis on a case study illustrates how MGAT generates attentive information flow over multimodal interaction graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鸟芋圆露露完成签到 ,获得积分10
5秒前
七七完成签到 ,获得积分10
5秒前
Temperature完成签到,获得积分10
6秒前
柚子完成签到,获得积分10
8秒前
葵小葵完成签到,获得积分10
10秒前
昏睡的蟠桃应助jyy采纳,获得200
10秒前
清爽的碧空完成签到,获得积分10
13秒前
NATURECATCHER完成签到,获得积分10
14秒前
乐观的饭饭完成签到 ,获得积分10
15秒前
vvv完成签到 ,获得积分10
16秒前
dent强完成签到 ,获得积分10
16秒前
义气的钥匙完成签到,获得积分10
18秒前
花花完成签到 ,获得积分10
19秒前
21秒前
小小王完成签到,获得积分10
21秒前
林药师完成签到,获得积分10
23秒前
24秒前
cccc发布了新的文献求助10
24秒前
机灵夏云完成签到,获得积分10
26秒前
妙蛙种子耶完成签到,获得积分10
26秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
qazx应助科研通管家采纳,获得10
27秒前
27秒前
Tina完成签到,获得积分10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
qazx应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
老朱完成签到,获得积分10
29秒前
cccc完成签到,获得积分10
30秒前
怡然的乘风完成签到 ,获得积分10
30秒前
31秒前
橘橘橘橘橘完成签到 ,获得积分10
31秒前
摔碎玻璃瓶完成签到,获得积分10
31秒前
科研通AI5应助qing1245采纳,获得10
32秒前
麦客发布了新的文献求助10
33秒前
钟D摆完成签到 ,获得积分10
34秒前
萨芬撒完成签到,获得积分10
35秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782780
求助须知:如何正确求助?哪些是违规求助? 3328140
关于积分的说明 10234864
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 758998