Qualitative classification of Dendrobium huoshanense (Feng dou) using fast non-destructive hand-held near infrared spectroscopy

线性判别分析 主成分分析 化学计量学 偏最小二乘回归 人工智能 模式识别(心理学) 支持向量机 校准 线性模型 计算机科学 数学 近红外光谱 统计 机器学习 光学 物理
作者
Fang Wang,Bin Jia,Jun Dai,Xiangwen Song,Xiaoli Li,Haidi Gao,Hui Yan,Bangxing Han
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE Publishing]
卷期号:30 (3): 147-153 被引量:8
标识
DOI:10.1177/09670335221078354
摘要

Because of the similar appearance and properties of different quality grades of the product, super Dendrobium huoshanense could be easily adulterated with first-grade D. huoshanense and second-grade D. huoshanense products, thereby affecting its clinical application and causing market distortion. In this study, a combination of hand-held near infrared spectroscopy and chemometrics was used to classify different grades of D. huoshanense. The standard normal variate was employed to preprocess the original near infrared spectra, following which linear analysis models (principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), and a non-linear support vector machine (SVM) model, were utilized to establish the identification models. The results showed that PCA analysis could not identify the three grades of D. huoshanense, and the LDA analysis could distinguish the second-grade from the other two grades. The PLSDA model resulted in prediction accuracies for the calibration cross-validation, and test sets of 91.83%, 83.58%, and 84.29%, respectively. Unfortunately, the super and first-grade D. huoshanense were not identified by the linear analysis model. Further analysis was performed with a non-linear model, where SVM was used to analyze all grades of D. huoshanense. The recognition rate of thel training set and validation set were 88% and 84%, respectively. All in all, the use of a hand-held near infrared spectrometer combined with chemometrics could identify the quality grade of D. huoshanense samples on-site in real-time, and provide a simple, fast, and reliable method for the quality control of the traditional Chinese medicine herb of D. huoshanense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SEASON完成签到,获得积分20
刚刚
NexusExplorer应助宇文天思采纳,获得10
1秒前
bkagyin应助包子采纳,获得10
1秒前
2秒前
2秒前
胡烨凯发布了新的文献求助10
3秒前
浅月影梦完成签到,获得积分20
3秒前
研友_85YJY8完成签到,获得积分10
3秒前
3秒前
snsut完成签到,获得积分10
4秒前
传奇3应助疯院士采纳,获得10
4秒前
5秒前
吴建文发布了新的文献求助10
5秒前
5秒前
浅月影梦发布了新的文献求助10
5秒前
缥缈浩然完成签到,获得积分10
5秒前
6秒前
鹊起发布了新的文献求助10
6秒前
6秒前
MJT10086完成签到,获得积分10
7秒前
偷猪剑客完成签到,获得积分10
7秒前
7秒前
眼睛大的从雪完成签到,获得积分10
7秒前
8秒前
万能图书馆应助舒适沛儿采纳,获得10
9秒前
辉子完成签到,获得积分10
9秒前
球求发布了新的文献求助10
9秒前
顺顺发布了新的文献求助10
9秒前
光亮黑夜完成签到 ,获得积分10
9秒前
10秒前
闲云散鹤发布了新的文献求助10
10秒前
搞怪烨伟发布了新的文献求助10
10秒前
五十发布了新的文献求助10
10秒前
mashuai发布了新的文献求助10
10秒前
Joy完成签到 ,获得积分10
11秒前
111发布了新的文献求助10
11秒前
12秒前
爆米花应助初a采纳,获得10
13秒前
西瓜汽水完成签到,获得积分10
14秒前
英俊的铭应助浅月影梦采纳,获得10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108273
求助须知:如何正确求助?哪些是违规求助? 3646389
关于积分的说明 11550347
捐赠科研通 3352356
什么是DOI,文献DOI怎么找? 1842043
邀请新用户注册赠送积分活动 908372
科研通“疑难数据库(出版商)”最低求助积分说明 825490