已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Qualitative classification of Dendrobium huoshanense (Feng dou) using fast non-destructive hand-held near infrared spectroscopy

线性判别分析 主成分分析 化学计量学 偏最小二乘回归 人工智能 模式识别(心理学) 支持向量机 校准 线性模型 计算机科学 数学 近红外光谱 统计 机器学习 光学 物理
作者
Fang Wang,Bin Jia,Jun Dai,Xiangwen Song,Xiaoli Li,Haidi Gao,Hui Yan,Bangxing Han
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE Publishing]
卷期号:30 (3): 147-153 被引量:5
标识
DOI:10.1177/09670335221078354
摘要

Because of the similar appearance and properties of different quality grades of the product, super Dendrobium huoshanense could be easily adulterated with first-grade D. huoshanense and second-grade D. huoshanense products, thereby affecting its clinical application and causing market distortion. In this study, a combination of hand-held near infrared spectroscopy and chemometrics was used to classify different grades of D. huoshanense. The standard normal variate was employed to preprocess the original near infrared spectra, following which linear analysis models (principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), and a non-linear support vector machine (SVM) model, were utilized to establish the identification models. The results showed that PCA analysis could not identify the three grades of D. huoshanense, and the LDA analysis could distinguish the second-grade from the other two grades. The PLSDA model resulted in prediction accuracies for the calibration cross-validation, and test sets of 91.83%, 83.58%, and 84.29%, respectively. Unfortunately, the super and first-grade D. huoshanense were not identified by the linear analysis model. Further analysis was performed with a non-linear model, where SVM was used to analyze all grades of D. huoshanense. The recognition rate of thel training set and validation set were 88% and 84%, respectively. All in all, the use of a hand-held near infrared spectrometer combined with chemometrics could identify the quality grade of D. huoshanense samples on-site in real-time, and provide a simple, fast, and reliable method for the quality control of the traditional Chinese medicine herb of D. huoshanense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Salvator完成签到 ,获得积分10
1秒前
cylee完成签到,获得积分10
1秒前
彭于晏应助echoii采纳,获得10
2秒前
Qin应助NN采纳,获得30
2秒前
weige发布了新的文献求助20
3秒前
安详向薇完成签到,获得积分10
7秒前
10秒前
acadedog完成签到 ,获得积分10
10秒前
大个应助平常芷波采纳,获得10
10秒前
flysky120发布了新的文献求助10
11秒前
14秒前
陈年人少熬夜完成签到,获得积分10
14秒前
CodeCraft应助hqh采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
善学以致用应助calone采纳,获得30
18秒前
18秒前
忧郁的寻冬完成签到,获得积分10
18秒前
喜悦的飞凤完成签到,获得积分20
19秒前
19秒前
希望天下0贩的0应助意意采纳,获得10
20秒前
21秒前
葵源发布了新的文献求助10
21秒前
22秒前
王大胖发布了新的文献求助10
23秒前
小桃发布了新的文献求助10
25秒前
28秒前
ncsy82完成签到,获得积分10
29秒前
葵源完成签到,获得积分10
29秒前
30秒前
HEIKU应助橘如采纳,获得10
30秒前
王大胖完成签到,获得积分20
30秒前
31秒前
ccrr发布了新的文献求助10
32秒前
KaK完成签到,获得积分10
32秒前
harry2021完成签到,获得积分10
32秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830132
求助须知:如何正确求助?哪些是违规求助? 3372665
关于积分的说明 10473778
捐赠科研通 3092220
什么是DOI,文献DOI怎么找? 1702017
邀请新用户注册赠送积分活动 818688
科研通“疑难数据库(出版商)”最低求助积分说明 771047