亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: a comparison with traditional machine learning algorithms

多光谱图像 RGB颜色模型 卷积神经网络 计算机科学 人工智能 稳健性(进化) 支持向量机 适应性 精准农业 随机森林 遥感 模式识别(心理学) 算法 农业 生态学 生物 基因 地质学 生物化学
作者
Danyang Yu,Yuanyuan Zha,Zhigang Sun,Jing Li,Xiuliang Jin,Wanxue Zhu,Jiang Bian,Li Ma,Yijian Zeng,Zhongbo Su
出处
期刊:Precision Agriculture [Springer Science+Business Media]
卷期号:24 (1): 92-113 被引量:44
标识
DOI:10.1007/s11119-022-09932-0
摘要

Accurate estimation of above-ground biomass (AGB) plays a significant role in characterizing crop growth status. In precision agriculture area, a widely-used method for measuring AGB is to develop regression relationships between AGB and agronomic traits extracted from multi-source remotely sensed images based on unmanned aerial vehicle (UAV) systems. However, such approach requires expert knowledges and causes the information loss of raw images. The objectives of this study are to (i) determine how multi-source images contribute to AGB estimation in single and whole growth stages; (ii) evaluate the robustness and adaptability of deep convolutional neural networks (DCNN) and other machine learning algorithms regarding AGB estimation. To establish multi-source image datasets, this study collected UAV red-green-blue (RGB), multispectral (MS) images and constructed the raster data for crop surface models (CSMs). Agronomic features were derived from the above-mentioned images and interpreted by the multiple linear regression, random forest, and support vector machine models. Then, a DCNN model was developed via an image-fusion architecture. Results show that the DCNN model provides the best estimation of maize AGB when a single type of image is considered, while the performance of DCNN degrades when sufficient agronomic features are used. Besides, the information of above three image datasets changes with various growth stages. The structure information derived from CSM images are more valuable than spectrum information derived from RGB and MS images in the vegetative stage, but less useful in the reproductive stage. Finally, a data fusion strategy was proposed according to the onboard sensors (or cost).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助科研通管家采纳,获得10
11秒前
YifanWang应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
1分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
1分钟前
友好的白柏完成签到 ,获得积分10
1分钟前
李健的小迷弟应助Sandy采纳,获得10
1分钟前
人谷完成签到 ,获得积分10
1分钟前
人谷呀完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
华仔应助羽生结弦的馨馨采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
qqq完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
早睡一哥完成签到,获得积分10
5分钟前
002完成签到,获得积分10
5分钟前
包容的剑完成签到 ,获得积分10
5分钟前
5分钟前
003完成签到,获得积分10
5分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
5分钟前
Sandy发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Sandy完成签到,获得积分10
5分钟前
传奇3应助天空之城采纳,获得10
5分钟前
5分钟前
6分钟前
天空之城发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229