Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin

木质素 离子液体 催化作用 化学 愈创木酚 键裂 劈理(地质) 离解(化学) 组合化学 有机化学 材料科学 复合材料 断裂(地质)
作者
Wei‐Lu Ding,Tao Zhang,Yanlei Wang,Jiayu Xin,Xiao Yuan,Lin Ji,Hongyan He
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (20): 3693-3704 被引量:14
标识
DOI:10.1021/acs.jpcb.1c10684
摘要

Lignin conversion into high value-added chemicals is of great significance for maximizing the use of renewable energy. Ionic liquids (ILs) have been widely used for targeted cleavage of the C–O bonds of lignin due to their high catalytic activity. Studying the cleavage activity of each IL is impossible and time-consuming, given the huge number of cations and anions. Currently, the mainstream approach to determining the cleavage activity of one IL is to calculate the activation barrier energy (Ea) theoretically via transition state search, a process that involves the iterative determination of an appropriate "imaginary frequency". Machine learning (ML) has been widely used for catalyst design and screening, enabling accurate mapping from specified descriptors to target properties. To avoid complicated Ea calculations and to screen potential candidates, in this study, we selected nearly 103 ILs and guaiacylglycerol-β-guaiacyl ether (GG) as the lignin model and used the ML technology to train models that can rapidly predict the cleavage activity of ILs. Taking the easily accessible bond dissociation energy (BDE) of the β–O–4 bond in GG as the target, an ML model with r > 0.93 for predicting the catalytic activity of ILs was obtained. The change tendency of the BDE is consistent with the experimental yield of guaiacol, reflecting the reliability of the ML model. Finally, [C2MIM][Tyrosine] and [C3MIM][Tyrosine] as the optimal candidates for future applications were screened out. This is a novel strategy for predicting the catalytic activity of ILs on lignin without the need to calculate complicated reaction pathways while reducing time consumption. It is anticipated that the ML model can be utilized in future practical applications for targeted cleavage of lignin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助27采纳,获得10
2秒前
2秒前
烟花应助呵呵呵采纳,获得30
4秒前
li发布了新的文献求助10
5秒前
哲轩发布了新的文献求助10
6秒前
小杨发布了新的文献求助30
6秒前
烟花应助rainbow采纳,获得10
6秒前
沉默是金发布了新的文献求助30
7秒前
Jasper应助辉辉采纳,获得100
7秒前
8秒前
9秒前
踏实语海完成签到,获得积分10
9秒前
10秒前
Akim应助catbird采纳,获得10
10秒前
领导范儿应助hu采纳,获得10
11秒前
li完成签到,获得积分10
11秒前
义气迎彤完成签到,获得积分10
12秒前
上官若男应助孙同学采纳,获得10
12秒前
ok123完成签到 ,获得积分10
12秒前
烟花应助各方面采纳,获得10
12秒前
13秒前
奶黄包发布了新的文献求助10
14秒前
等月光落雪地完成签到,获得积分10
14秒前
晴空万里应助张靖松采纳,获得10
14秒前
14秒前
科目三应助磨磨采纳,获得10
15秒前
16秒前
苏梗完成签到 ,获得积分10
16秒前
17秒前
wanci应助自觉雨文采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
能干大树发布了新的文献求助10
20秒前
科研通AI5应助胖狗采纳,获得10
20秒前
弄香发布了新的文献求助10
21秒前
哈基米德应助灵巧的大开采纳,获得20
21秒前
21秒前
悦耳的啤酒完成签到 ,获得积分20
21秒前
ssbfbz发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059688
求助须知:如何正确求助?哪些是违规求助? 4284352
关于积分的说明 13351080
捐赠科研通 4101792
什么是DOI,文献DOI怎么找? 2245799
邀请新用户注册赠送积分活动 1251584
关于科研通互助平台的介绍 1182238