Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin

木质素 离子液体 催化作用 化学 愈创木酚 键裂 劈理(地质) 离解(化学) 组合化学 有机化学 材料科学 复合材料 断裂(地质)
作者
Wei‐Lu Ding,Tao Zhang,Yanlei Wang,Jiayu Xin,Xiao Yuan,Lin Ji,Hongyan He
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (20): 3693-3704 被引量:9
标识
DOI:10.1021/acs.jpcb.1c10684
摘要

Lignin conversion into high value-added chemicals is of great significance for maximizing the use of renewable energy. Ionic liquids (ILs) have been widely used for targeted cleavage of the C–O bonds of lignin due to their high catalytic activity. Studying the cleavage activity of each IL is impossible and time-consuming, given the huge number of cations and anions. Currently, the mainstream approach to determining the cleavage activity of one IL is to calculate the activation barrier energy (Ea) theoretically via transition state search, a process that involves the iterative determination of an appropriate "imaginary frequency". Machine learning (ML) has been widely used for catalyst design and screening, enabling accurate mapping from specified descriptors to target properties. To avoid complicated Ea calculations and to screen potential candidates, in this study, we selected nearly 103 ILs and guaiacylglycerol-β-guaiacyl ether (GG) as the lignin model and used the ML technology to train models that can rapidly predict the cleavage activity of ILs. Taking the easily accessible bond dissociation energy (BDE) of the β–O–4 bond in GG as the target, an ML model with r > 0.93 for predicting the catalytic activity of ILs was obtained. The change tendency of the BDE is consistent with the experimental yield of guaiacol, reflecting the reliability of the ML model. Finally, [C2MIM][Tyrosine] and [C3MIM][Tyrosine] as the optimal candidates for future applications were screened out. This is a novel strategy for predicting the catalytic activity of ILs on lignin without the need to calculate complicated reaction pathways while reducing time consumption. It is anticipated that the ML model can be utilized in future practical applications for targeted cleavage of lignin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清音发布了新的文献求助10
2秒前
顾矜应助沉静从阳采纳,获得10
4秒前
5秒前
天海发布了新的文献求助30
7秒前
8秒前
gqp完成签到,获得积分10
9秒前
mczhu完成签到,获得积分10
11秒前
Songjiamei完成签到,获得积分10
13秒前
chenyu完成签到,获得积分10
15秒前
阿嘎普莱特完成签到,获得积分10
15秒前
lele发布了新的文献求助20
18秒前
孙燕应助飘逸的凝荷采纳,获得10
19秒前
NancyDee发布了新的文献求助10
22秒前
zoe发布了新的文献求助10
22秒前
dolabmu完成签到 ,获得积分10
23秒前
23秒前
qinzx完成签到,获得积分10
23秒前
24秒前
上官若男应助Nuyoah采纳,获得10
25秒前
26秒前
Vivian完成签到,获得积分10
27秒前
球状闪电发布了新的文献求助10
27秒前
义气幼珊发布了新的文献求助10
28秒前
愉快的楷瑞完成签到,获得积分10
28秒前
852应助zoe采纳,获得10
30秒前
HAHA完成签到,获得积分10
31秒前
31秒前
乐乐应助NeoWu采纳,获得10
32秒前
风清扬应助Steven采纳,获得10
32秒前
Joule完成签到,获得积分10
33秒前
丰富的含巧应助lele采纳,获得20
36秒前
星空棒棒糖完成签到,获得积分10
36秒前
Joule发布了新的文献求助10
36秒前
zoe完成签到,获得积分20
38秒前
39秒前
顺心醉蝶完成签到 ,获得积分10
39秒前
niulugai完成签到,获得积分10
39秒前
研友_VZG7GZ应助研友_LXOJq8采纳,获得10
41秒前
42秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087807
求助须知:如何正确求助?哪些是违规求助? 3626710
关于积分的说明 11499812
捐赠科研通 3339556
什么是DOI,文献DOI怎么找? 1836012
邀请新用户注册赠送积分活动 904171
科研通“疑难数据库(出版商)”最低求助积分说明 822092