Spectral knowledge-based regression for laser-induced breakdown spectroscopy quantitative analysis

过度拟合 激光诱导击穿光谱 支持向量机 计算机科学 光谱学 人工智能 非线性系统 线性模型 偏最小二乘回归 核(代数) 数据挖掘 机器学习 数学 物理 人工神经网络 量子力学 组合数学
作者
Weiran Song,Muhammad Sher Afgan,Yong‐Huan Yun,Hui Wang,Jiacheng Cui,Weilun Gu,Zongyu Hou,Zhe Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117756-117756 被引量:23
标识
DOI:10.1016/j.eswa.2022.117756
摘要

Laser-induced breakdown spectroscopy (LIBS) is a promising atomic emission spectroscopic technique for multi-elemental analysis and has the advantages of real-time multi-element measurement, minimal sample preparation and remote detection. However, the quality of LIBS data can be low due to matrix effects and signal uncertainty which hinders the wide application of LIBS. Recent studies attempt to improve the performance of LIBS quantitative analysis using linear and nonlinear multivariate analysis models. Linear models can easily present how key variables contribute to the prediction but suffer from performance degradation if data has a high degree of nonlinearity. Nonlinear models tend to have good performance, but they lack simple and intuitive explanations for the contribution of variables and are prone to overfitting. Moreover, nonlinear models used in LIBS quantitative analysis, such as support vector regression (SVR) and kernel extreme learning machine (K-ELM), are not designed to incorporate domain knowledge of spectral data. In this work, a new machine learning algorithm is proposed, namely spectral knowledge-based regression (SKR), which integrates linear and nonlinear models to improve the performance of LIBS quantitative analysis. The linear model is knowledge-driven and built on key variables correlated with analyte composition. The nonlinear model is data-driven and transforms the input data into a kernel matrix. The proposed SKR is tested on 4 LIBS datasets and outperforms 5 baseline methods on 12 of 18 quantification tasks. Moreover, it intuitively explains the contribution of key variables towards prediction and has the same low computational complexity as ridge regression These results demonstrate that SKR inherits the high accuracy of nonlinear modelling and the simple variable interpretability of linear models. Therefore, it can serve as a promising method for improving the accuracy and reliability of LIBS quantitative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stroeve完成签到,获得积分10
1秒前
zhang26xian完成签到,获得积分10
1秒前
2秒前
GongZH发布了新的文献求助10
3秒前
3秒前
pu66完成签到,获得积分10
4秒前
5秒前
甄人达发布了新的文献求助20
5秒前
5秒前
陈昭琼发布了新的文献求助10
6秒前
6秒前
英勇珊珊发布了新的文献求助10
7秒前
鳄鱼发布了新的文献求助10
7秒前
7秒前
俞晓完成签到,获得积分10
7秒前
夏某人完成签到 ,获得积分10
7秒前
7秒前
7秒前
晗晗完成签到 ,获得积分10
9秒前
虚幻青曼发布了新的文献求助10
9秒前
10秒前
Scout发布了新的文献求助10
10秒前
11秒前
aa完成签到,获得积分10
11秒前
猪小屁发布了新的文献求助10
11秒前
哦哦哦发布了新的文献求助10
12秒前
阴影完成签到,获得积分10
12秒前
qwer2580发布了新的文献求助10
13秒前
traveller完成签到,获得积分10
13秒前
beifa发布了新的文献求助10
14秒前
14秒前
Scout完成签到,获得积分10
14秒前
wanci应助LIANG采纳,获得10
15秒前
wmq发布了新的文献求助10
15秒前
天天快乐应助中微子采纳,获得10
15秒前
16秒前
李爱国应助summer采纳,获得10
17秒前
mm发布了新的文献求助10
18秒前
19秒前
铁观音发布了新的文献求助10
20秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854984
求助须知:如何正确求助?哪些是违规求助? 3397690
关于积分的说明 10603256
捐赠科研通 3119494
什么是DOI,文献DOI怎么找? 1719326
邀请新用户注册赠送积分活动 828133
科研通“疑难数据库(出版商)”最低求助积分说明 777298