原位
蛋白质表达
计算生物学
多路复用
计算机科学
表达式(计算机科学)
鉴定(生物学)
空间分析
生物
模式识别(心理学)
人工智能
化学
生物化学
遥感
基因
地理
植物
电信
有机化学
程序设计语言
作者
Weiruo Zhang,Irene Li,Nathan E. Reticker-Flynn,Zinaida Good,Serena Chang,Nikolay Samusik,Saumyaa Saumyaa,Yuanyuan Li,Xin Zhou,Rachel Liang,Christina S. Kong,Quynh‐Thu Le,Andrew J. Gentles,John B. Sunwoo,Garry P. Nolan,Edgar G. Engleman,Sylvia K. Plevritis
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2022-06-01
卷期号:19 (6): 759-769
被引量:84
标识
DOI:10.1038/s41592-022-01498-z
摘要
Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and subjective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI