Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy

校准 偏最小二乘回归 激光诱导击穿光谱 土工试验 土壤有机质 环境科学 土壤水分 样品(材料) 光谱学 土壤科学 数学 化学 统计 物理 色谱法 量子力学
作者
Mengjin Hu,Fei Ma,Zhenwang Li,Xuebin Xu,Changwen Du
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (4): 1488-1488 被引量:5
标识
DOI:10.3390/s22041488
摘要

Rapid quantification of soil organic matter (SOM) is a great challenge for the health assessment and fertility management of agricultural soil. Laser-induced breakdown spectroscopy (LIBS) with appropriate modeling algorithms is an alternative tool for this measurement. However, the current calibration strategy limits the prediction performance of the LIBS technique. In this study, 563 soil samples from Hetao Irrigation District in China were collected; the LIBS spectra of the soils were recorded in the wavenumber range of 288-950 nm with a resolution of 0.116 nm; a self-adaptive partial least squares regression model (SAM-PLSR) was employed to explore optimal model parameters for SOM prediction; and calibration parameters including sample selection for the calibration database, sample numbers and sample location sites were optimized. The results showed that the sample capacity around 60-80, rather than all of the samples in the soil library database, was selected for calibration from a spectral similarity re-ordered database regarding unknown samples; the model produced excellent predictions, with R2 = 0.92, RPD = 3.53 and RMSEP = 1.03 g kg-1. Both the soil variances of the target property and the spectra similarity of the soil background were the key factors for the calibration model, and the small sample set led to poor predictions due to the low variances of the target property, while negative effects were observed for the large sample set due to strong interferences from the soil background. Therefore, the specific unknown sample depended strategy, i.e., self-adaptive modelling, could be applied for fast SOM sensing using LIBS for soils in varied scales with improved robustness and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdpo发布了新的文献求助10
1秒前
你好耀眼完成签到,获得积分10
1秒前
Bob发布了新的文献求助10
1秒前
1秒前
summer发布了新的文献求助10
2秒前
cm发布了新的文献求助10
2秒前
3秒前
钱念波发布了新的文献求助10
4秒前
GAO完成签到,获得积分10
5秒前
香蕉觅云应助jzmulyl采纳,获得10
5秒前
5秒前
5秒前
HIKING发布了新的文献求助10
6秒前
6秒前
6秒前
栾栾完成签到,获得积分10
7秒前
暴躁的凌柏完成签到 ,获得积分10
7秒前
li完成签到,获得积分20
8秒前
8秒前
沉沉发布了新的文献求助10
9秒前
AA发布了新的文献求助30
9秒前
HAL应助期待未来的自己采纳,获得10
11秒前
自信的昊焱完成签到,获得积分10
12秒前
shelemi发布了新的文献求助10
12秒前
汉堡包应助yeeee采纳,获得10
12秒前
祖金杰发布了新的文献求助10
12秒前
13秒前
大个应助123采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
赘婿应助蓝莓芝士采纳,获得10
14秒前
14秒前
suzy-123发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
16秒前
不配.应助烂漫百招采纳,获得20
17秒前
17秒前
18秒前
decade完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232724
求助须知:如何正确求助?哪些是违规求助? 3766059
关于积分的说明 11832964
捐赠科研通 3424638
什么是DOI,文献DOI怎么找? 1879415
邀请新用户注册赠送积分活动 932281
科研通“疑难数据库(出版商)”最低求助积分说明 839512