亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Decoupling and Modality-Invariant Representation Learning for Visible-Infrared Person Re-Identification

判别式 人工智能 计算机科学 模式识别(心理学) 不变(物理) 特征学习 去相关 代表(政治) 理论计算机科学 数学 计算机视觉 政治学 数学物理 政治 法学
作者
Weipeng Hu,Bohong Liu,Haitang Zeng,Yanke Hou,Haifeng Hu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5095-5109 被引量:30
标识
DOI:10.1109/tcsvt.2022.3147813
摘要

Visible-infrared person re-identification (RGB-IR ReID) has now attracted increasing attention due to its surveillance applications under low-light environments. However, the large intra-class variations between different domains are still a challenging issue in the field of computer vision. To address the above issue, we propose a novel adversarial Decoupling and Modality-invariant Representation learning (DMiR) method to explore potential spectrum-invariant yet identity-discriminative representations for cross-modality pedestrians. Our model consists of three key components, including Domain-related Representation Disentanglement (DrRD), Modality-invariant Discriminative Representation (MiDR) and Representation Orthogonal Decorrelation (ROD). First, two subnets named Identity-Net and Domain-Net are designed to extract identity-related features and domain-related features, respectively. Given this two-stream structure, the DrRD is introduced to achieve adversarial decoupling against domain-specific features via a min-max disentanglement process. Specifically, the classification objective function on Domain-Net is minimized to extract spectrum-specific information while maximizing it to reduce domain-specific information. Second, in Identity-Net, we introduce MiDR to enhance intra-class compactness and reduce domain variations by exploring positive and negative pair variations, semantic-wise differences, and pair-wise semantic variations. Finally, the correlation between the two decomposed features, i.e., identity-related features and domain-related features, may lead to the introduction of modal information in identity representations, and vice versa. Therefore, we present the ROD constraint to make the two decomposed features unrelated to each other, which can more effectively separate the two-component features and enhance feature representations. Practically, we construct ROD at the feature-level and parameter-level, and finally select feature-level ROD as the decorrelation strategy because of its superior decorrelation performance. The whole scheme leads to disentangling spectrum-dependent information, as well as purifying identity information. Extensive experiments are carried out on two mainstream RGB-IR ReID datasets, and the results demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
42秒前
1分钟前
1分钟前
1分钟前
610完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
柔弱烨霖完成签到,获得积分10
2分钟前
andrele发布了新的文献求助10
2分钟前
3分钟前
gszy1975完成签到,获得积分10
3分钟前
噜噜晓完成签到 ,获得积分10
3分钟前
3分钟前
菜菜发布了新的文献求助10
3分钟前
英姑应助菜菜采纳,获得10
3分钟前
xxh完成签到 ,获得积分10
4分钟前
无幻完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
欣心发布了新的文献求助10
4分钟前
5分钟前
wangfaqing942完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
汉堡包应助欣心采纳,获得10
6分钟前
7分钟前
7分钟前
汶南完成签到 ,获得积分10
7分钟前
斯寜应助budingman采纳,获得10
7分钟前
斯寜应助budingman采纳,获得10
7分钟前
斯寜应助budingman采纳,获得10
7分钟前
loen完成签到,获得积分10
8分钟前
9分钟前
herococa完成签到,获得积分10
9分钟前
9分钟前
10分钟前
yanxi发布了新的文献求助10
10分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343971
关于积分的说明 10318265
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323