强化学习
避碰
弹道
计算机科学
干扰(通信)
加速度
物联网
碰撞
接头(建筑物)
实时计算
人工智能
工程类
计算机网络
嵌入式系统
建筑工程
频道(广播)
物理
计算机安全
经典力学
天文
作者
Shu Xu,Xiangyu Zhang,Chunguo Li,Dongming Wang,Lüxi Yang
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-01-21
卷期号:71 (3): 3389-3394
被引量:34
标识
DOI:10.1109/tvt.2022.3144277
摘要
In this paper, we investigate an unmanned aerial vehicle (UAV) communication system, where the trajectories of multi-UAVs are designed for the data collection mission of IoT nodes. We aim at minimizing the mission time with constraints of UAV's maximum speed and acceleration, the collision avoidance, and communication interference among UAVs. We propose a three-step approach to solve this problem, which is based on the K-means algorithm, and Deep Reinforcement Learning (DRL) with a distributed manner and a centralized manner. The mutual influences like collision avoidance and interference among UAVs are explicitly expressed in our algorithm. Numerical results show the advantage of our proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI