Work function regulation of surface-engineered Ti2CT2MXenes for efficient electrochemical nitrogen reduction reaction

MXenes公司 原子轨道 空位缺陷 材料科学 化学物理 过渡金属 密度泛函理论 电子转移 纳米技术 催化作用 计算化学 化学 物理化学 电子 结晶学 物理 量子力学 生物化学
作者
Yaqin Zhang,Ninggui Ma,Tairan Wang,Jun Fan
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:14 (35): 12610-12619 被引量:30
标识
DOI:10.1039/d2nr01861f
摘要

Electrochemical conversion of nitrogen to ammonia is a promising method in modern agriculture and industry due to its suitability and feasibility under mild conditions. Therefore, seeking electrocatalysts and understanding the catalytic mechanisms are of great importance. In this work, by combining the concept of the synergetic effect of the terminal vacancy and transition metal active center, we studied the whole catalytic mechanism of defective Ti2CT2 MXenes with functional groups (T = O, F, H, OH) by employing first-principles calculations. It is demonstrated that the electron transfer behavior of 2D transition metal carbides can be tuned by modifying the surface functional groups. Herein, the rarely investigated work function regulation is proved to effectively alter the electron transfer ability, thus the binding strength of key intermediates on the surface can be optimized. Besides, Ti2CO2 with an oxygen vacancy is identified as a promising candidate through a distal mechanism, where the calculated electronic properties reveal that the introduction of in-gap states is responsible for activating N2 with physical adsorption. In addition, obvious orbital splitting of the σ and π* orbitals of N2 is observed due to the hybridization of frontier orbitals. The symmetry matching rule of the frontier orbitals of π* 2p and the σ 2p orbitals of N with Ti d orbitals further illustrates the "acceptance-donation" interaction. These theoretical insights highlight the underlying mechanism of the synergetic effect of surficial vacancy and exposed transition metal atoms, and provide an alternative view of designing efficient NRR electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liulu完成签到 ,获得积分10
1秒前
Cylair完成签到,获得积分10
2秒前
哈哈哈哈发布了新的文献求助10
2秒前
2秒前
kun完成签到,获得积分10
2秒前
乐乐应助阿都采纳,获得10
3秒前
王乐多完成签到,获得积分10
4秒前
FBQZDJG2122完成签到,获得积分10
4秒前
彭于晏应助梅雨季来信采纳,获得10
5秒前
lingling发布了新的文献求助20
5秒前
宁幼萱完成签到,获得积分10
6秒前
6秒前
研友_QQC完成签到,获得积分10
6秒前
hjc完成签到,获得积分10
6秒前
Painkiller_完成签到,获得积分10
7秒前
多情的又夏完成签到 ,获得积分10
8秒前
一程完成签到 ,获得积分10
9秒前
xiuxue424完成签到,获得积分10
10秒前
finger完成签到,获得积分10
11秒前
彪壮的慕儿完成签到,获得积分20
11秒前
尹山蝶完成签到,获得积分10
13秒前
13秒前
小蘑菇应助张张张xxx采纳,获得10
14秒前
tramp应助1111采纳,获得10
15秒前
luha完成签到,获得积分10
15秒前
Shan完成签到 ,获得积分10
16秒前
17秒前
王子陌完成签到,获得积分10
17秒前
17秒前
skf发布了新的文献求助10
17秒前
haohao完成签到,获得积分10
18秒前
多多看文献完成签到,获得积分10
19秒前
城南完成签到,获得积分10
19秒前
什么钩八玩意儿完成签到,获得积分10
20秒前
隐形傲霜完成签到 ,获得积分10
20秒前
SYLH应助xixi采纳,获得10
21秒前
勤劳飞松完成签到,获得积分10
21秒前
彰化完成签到,获得积分10
21秒前
21秒前
Finch11完成签到 ,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816002
求助须知:如何正确求助?哪些是违规求助? 3359464
关于积分的说明 10402883
捐赠科研通 3077360
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767743