Radiomics: a new tool to differentiate adrenocortical adenoma from carcinoma

肾上腺皮质癌 医学 肾上腺皮质腺瘤 恶性肿瘤 腺瘤 放射科 病理
作者
Francesca Torresan,Filippo Crimì,Filippo Ceccato,Francesca Zavan,Mattia Barbot,Carmelo Lacognata,Raffaella Motta,Claudia Armellin,Carla Scaroni,Emilio Quaia,Cristina Campi,Maurizio Iacobone
出处
期刊:BJS open [Wiley]
卷期号:5 (1) 被引量:35
标识
DOI:10.1093/bjsopen/zraa061
摘要

The main challenge in the management of indeterminate incidentally discovered adrenal tumours is to differentiate benign from malignant lesions. In the absence of clear signs of invasion or metastases, imaging techniques do not always precisely define the nature of the mass. The present pilot study aimed to determine whether radiomics may predict malignancy in adrenocortical tumours.CT images in unenhanced, arterial, and venous phases from 19 patients who had undergone resection of adrenocortical tumours and a cohort who had undergone surveillance for at least 5 years for incidentalomas were reviewed. A volume of interest was drawn for each lesion using dedicated software, and, for each phase, first-order (histogram) and second-order (grey-level colour matrix and run-length matrix) radiological features were extracted. Data were revised by an unsupervised machine learning approach using the K-means clustering technique.Of operated patients, nine had non-functional adenoma and 10 carcinoma. There were 11 patients in the surveillance group. Two first-order features in unenhanced CT and one in arterial CT, and 14 second-order parameters in unenhanced and venous CT and 10 second-order features in arterial CT, were able to differentiate adrenocortical carcinoma from adenoma (P < 0.050). After excluding two malignant outliers, the unsupervised machine learning approach correctly predicted malignancy in seven of eight adrenocortical carcinomas in all phases.Radiomics with CT texture analysis was able to discriminate malignant from benign adrenocortical tumours, even by an unsupervised machine learning approach, in nearly all patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助樊雪采纳,获得10
1秒前
1秒前
1秒前
kawayifenm完成签到,获得积分10
3秒前
3秒前
hongcha发布了新的文献求助10
3秒前
充电宝应助无聊的夜山采纳,获得10
4秒前
小蘑菇应助wly9399375采纳,获得10
5秒前
xxb完成签到,获得积分10
7秒前
科研通AI5应助lizhiqian2024采纳,获得10
8秒前
9秒前
脑洞疼应助t12s2365_采纳,获得10
9秒前
万能图书馆应助Soir采纳,获得10
10秒前
nana发布了新的文献求助30
11秒前
song完成签到,获得积分10
12秒前
busuijisenlin完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助亚亚采纳,获得10
13秒前
HHYYAA完成签到 ,获得积分10
14秒前
15秒前
15秒前
Lmondy应助AJS采纳,获得10
15秒前
16秒前
FashionBoy应助萝卜卷心菜采纳,获得10
17秒前
18秒前
18秒前
拼搏半梦发布了新的文献求助10
19秒前
浣熊小呆发布了新的文献求助10
20秒前
20秒前
hongcha完成签到,获得积分10
21秒前
pzy发布了新的文献求助10
22秒前
NexusExplorer应助2754采纳,获得10
22秒前
24秒前
24秒前
xuxu发布了新的文献求助10
25秒前
平淡紫夏发布了新的文献求助10
27秒前
27秒前
29秒前
29秒前
Soir发布了新的文献求助10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791065
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276878
捐赠科研通 3052348
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803102
科研通“疑难数据库(出版商)”最低求助积分说明 761066