亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on low-carbon campus based on ecological footprint evaluation and machine learning: A case study in China

生态足迹 碳足迹 持续性 人均 人口 可持续发展 环境经济学 环境科学 环境资源管理 生态学 温室气体 社会学 经济 生物 人口学
作者
Niting Zheng,Sheng Li,Yunpeng Wang,Yuwen Huang,Pietro Bartocci,Francesco Fantozzid,Junling Huang,Lü Xing,Haiping Yang,Hanping Chen,Qing Yang,Jianlan Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:323: 129181-129181 被引量:27
标识
DOI:10.1016/j.jclepro.2021.129181
摘要

Universities, the important locations for scientific research and education, have the responsibility to lead ecological civilization and low carbon transition. Ecological footprint evaluation (EFE) is usually used to measure sustainability of campuses. Although it can provide guidance and reference for overall campus planning, it lacks effective significance for individual behavior, especially when the reduction of carbon emissions is the aim. On the other hand a possible solution can be represented by machine learning. It can identify the key factors that will influence individual's overall carbon emissions caused by students' daily behavior, it can be used to find effective ways to reduce individual carbon emissions. This paper applied EFE and machine learning to comprehensively evaluate campus sustainability and students' carbon emissions. Huazhong University of Science and Technology (HUST), a "University in the Forest", was used as a study case in China. Even if HUST is endowned with a forest coverage of 72%, here we showed that its Ecological Footprint Index was −12.52, indicating strong unsustainability. This is mainly due to the high energy and food consumption, caused by the large population living in the campus and the lacking of energy saving measures. The per capita ecological footprint was relatively high, compared with other universities in the world, which meant more efforts needed to be done on ecological sustainability. Low carbon emission is a key feature for a sustainable campus. Based on the questionnaire survey delivered to 486 students who live in the campus, their daily active data were collected in terms of students' personal clothing, food, housing, consumption and transportation. And their associated carbon emissions were calculated based on emission intensities of Chinese population. Based on 486 detailed datasets, machine learning was then used to identify the key daily behavior to influence students' total carbon emission. Results showed that making behavior changes in air conditioning, food and electric bicycle were the most effective ways to reduce carbon emissions. Finally, while effective suggestions were proposed based on qualitative and quantitative evaluations, it is concluded that it is imperative for universities in China to formulate effective low-carbon policies, to achieve sustainable development and to confront global climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
方沅完成签到,获得积分10
9秒前
GY916完成签到 ,获得积分10
13秒前
无花果应助iorpi采纳,获得10
18秒前
儒雅的雁山完成签到 ,获得积分10
22秒前
Ghiocel完成签到,获得积分10
27秒前
37秒前
南山下发布了新的文献求助10
37秒前
黑翅鸢完成签到,获得积分10
39秒前
海鸥别叫了完成签到 ,获得积分10
45秒前
今后应助南山下采纳,获得10
50秒前
黑翅鸢发布了新的文献求助30
52秒前
张晓祁完成签到,获得积分10
56秒前
ZaZa完成签到,获得积分10
59秒前
yueying完成签到,获得积分10
1分钟前
二牛完成签到,获得积分10
1分钟前
eric888应助真实的枕头采纳,获得100
1分钟前
sjyu1985完成签到 ,获得积分10
1分钟前
一只熊完成签到 ,获得积分10
1分钟前
情怀应助真实的枕头采纳,获得30
1分钟前
shadowj1020发布了新的文献求助10
1分钟前
1分钟前
清樾完成签到 ,获得积分10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
谦让的思枫完成签到,获得积分10
2分钟前
2分钟前
努力的混子完成签到,获得积分10
2分钟前
爆米花应助谦让的思枫采纳,获得10
2分钟前
2分钟前
丘比特应助huhu采纳,获得10
2分钟前
Nakacoke77完成签到,获得积分10
2分钟前
2分钟前
2分钟前
南山下发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091408
求助须知:如何正确求助?哪些是违规求助? 3630193
关于积分的说明 11507509
捐赠科研通 3341764
什么是DOI,文献DOI怎么找? 1836873
邀请新用户注册赠送积分活动 904789
科研通“疑难数据库(出版商)”最低求助积分说明 822544