Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples

嵌入 计算机科学 人工智能 乳腺超声检查 乳房成像 乳腺癌 模式识别(心理学) 机器学习 数据挖掘 医学 乳腺摄影术 癌症 内科学
作者
Jianing Xi,Zhaoji Miao,Longzhong Liu,Xuebing Yang,Wensheng Zhang,Qinghua Huang,Xuelong Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:468: 60-70 被引量:26
标识
DOI:10.1016/j.neucom.2021.10.013
摘要

In the AI diagnosis of breast cancer, instead of ultrasound images from non-standard acquisition process, the Breast Image Reporting and Data System (BI-RADS) reports are widely accepted as the input data since it can give standardized descriptions for the breast ultrasound samples. The BI-RADS reports are usually stored as the format of Knowledge Graph (KG) due to the flexibility, and the KG embedding is a common procedure for the AI analysis on BI-RADS data. However, since most existing embedding methods are based on the local connections in KG, in the situation of limited labeled samples, there is a clear need for embedding based diagnosis method which is capable of representing the global interactions among all entities/relations and associating the labeled/unlabeled samples. To diagnose the breast ultrasound samples with limited labels, in this paper we propose an efficient framework Knowledge Tensor Embedding with Association Enhancement Diagnosis (KTEAED), which adopts tensor decomposition into the embedding to achieve the global representation of KG entities/relations, and introduces the association enhancement strategy to prompt the similarities between embeddings of labeled/unlabeled samples. The embedding vectors are then utilized to diagnose the clinical outcomes of samples by predicting their links to outcomes entities. Through extensive experiments on BI-RADS data with different fractions of labels and ablation studies, our KTEAED displays promising performance in the situations of various fractions of labels. In summary, our framework demonstrates a clear advantage of tackling limited labeled samples of BI-RADS reports in the breast ultrasound diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
代泡泡完成签到,获得积分10
1秒前
JamesPei应助豆皮采纳,获得10
1秒前
zzzzzz完成签到 ,获得积分10
1秒前
1秒前
NCS完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
科研通AI5应助师德采纳,获得10
6秒前
ASZXDW发布了新的文献求助10
6秒前
云浮山海发布了新的文献求助10
6秒前
TigerOvO应助兔兔不吐泡泡采纳,获得30
7秒前
8秒前
dididodo完成签到,获得积分10
9秒前
NexusExplorer应助张章采纳,获得10
10秒前
爆米花应助doocan采纳,获得10
10秒前
Self发布了新的文献求助10
11秒前
罗中翠发布了新的文献求助10
11秒前
鼻揩了转去应助汪鱼岩采纳,获得10
12秒前
Ava应助尛瞐慶成采纳,获得10
12秒前
层层泡芙完成签到,获得积分10
13秒前
科研通AI5应助zhanyuji采纳,获得10
13秒前
13秒前
14秒前
sunhuaqiang发布了新的文献求助10
14秒前
bkagyin应助LXZ采纳,获得10
14秒前
ttgx完成签到,获得积分10
16秒前
cdercder应助sadf采纳,获得10
16秒前
Orange应助Snieno采纳,获得10
16秒前
薛厌发布了新的文献求助10
17秒前
xdwyd给xdwyd的求助进行了留言
18秒前
18秒前
lzj发布了新的文献求助10
18秒前
维多利亚少年完成签到,获得积分10
19秒前
754完成签到,获得积分10
19秒前
19秒前
lxiaok发布了新的文献求助10
20秒前
20秒前
田様应助碑海北采纳,获得10
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391