Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups

动态功能连接 精神分裂症(面向对象编程) 静息状态功能磁共振成像 神经影像学 计算机科学 神经科学 大脑活动与冥想 心理学 人工智能 功能磁共振成像 模式识别(心理学) 血氧水平依赖性 脑电图 程序设计语言
作者
Qunfang Long,Suchita Bhinge,Vince D. Calhoun,Tü̈lay Adali
出处
期刊:Brain connectivity [Mary Ann Liebert, Inc.]
卷期号:11 (6): 430-446 被引量:6
标识
DOI:10.1089/brain.2020.0815
摘要

Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant clinical importance due to a need to study the heterogeneity of schizophrenia. Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to investigate the relationship between dBA and dynamic FNC (dFNC). Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA) patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms. Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the use of neuroimaging in studying the heterogeneity of disorders. Impact statement This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional magnetic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of the human brain, especially the brain with a mental disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇的红酒完成签到 ,获得积分10
4秒前
5秒前
叶先生完成签到 ,获得积分10
6秒前
7秒前
坦率雪枫完成签到 ,获得积分10
7秒前
一直成长完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
别拿暗恋当饭吃完成签到 ,获得积分10
11秒前
贰鸟应助张聪采纳,获得20
15秒前
清脆靳完成签到,获得积分10
17秒前
Wind应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
Wind应助科研通管家采纳,获得10
20秒前
21秒前
李瑞卿完成签到 ,获得积分10
21秒前
123发布了新的文献求助10
22秒前
花花糖果完成签到 ,获得积分10
25秒前
27秒前
她的城完成签到,获得积分0
28秒前
张聪完成签到,获得积分10
37秒前
38秒前
40秒前
狂野乌冬面完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
程新亮完成签到 ,获得积分10
43秒前
WU完成签到 ,获得积分10
44秒前
yanxueyi完成签到 ,获得积分10
45秒前
无极2023完成签到 ,获得积分0
48秒前
自信尔柳完成签到 ,获得积分10
49秒前
皮皮虾完成签到 ,获得积分10
49秒前
pep完成签到 ,获得积分10
49秒前
cdc完成签到 ,获得积分10
49秒前
51秒前
高挑的若雁完成签到 ,获得积分10
52秒前
拾壹完成签到,获得积分10
56秒前
haochi完成签到,获得积分10
56秒前
59秒前
freeway完成签到,获得积分10
1分钟前
小白完成签到 ,获得积分10
1分钟前
Belinda完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4249906
求助须知:如何正确求助?哪些是违规求助? 3783044
关于积分的说明 11873914
捐赠科研通 3434868
什么是DOI,文献DOI怎么找? 1885102
邀请新用户注册赠送积分活动 936768
科研通“疑难数据库(出版商)”最低求助积分说明 842696