Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms

医学 机器学习 人工智能 乳腺癌 超声波 乳房成像 神经组阅片室 乳腺超声检查 接收机工作特性 算法 计算机科学 乳腺摄影术 放射科 癌症 内科学 精神科 神经学
作者
Mengwei Ma,Renyi Liu,Chanjuan Wen,Weimin Xu,Zeyuan Xu,Sina Wang,Jiefang Wu,Derun Pan,Bowen Zheng,Genggeng Qin,Weiguo Chen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 1652-1662 被引量:71
标识
DOI:10.1007/s00330-021-08271-4
摘要

To evaluate the performance of interpretable machine learning models in predicting breast cancer molecular subtypes.We retrospectively enrolled 600 patients with invasive breast carcinoma between 2012 and 2019. The patients were randomly divided into a training (n = 450) and a testing (n = 150) set. The five constructed models were trained based on clinical characteristics and imaging features (mammography and ultrasonography). The model classification performances were evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity. Shapley additive explanation (SHAP) technique was used to interpret the optimal model output. Then we choose the optimal model as the assisted model to evaluate the performance of another four radiologists in predicting the molecular subtype of breast cancer with or without model assistance, according to mammography and ultrasound images.The decision tree (DT) model performed the best in distinguishing triple-negative breast cancer (TNBC) from other breast cancer subtypes, yielding an AUC of 0.971; accuracy, 0.947; sensitivity, 0.905; and specificity, 0.941. The accuracy, sensitivity, and specificity of all radiologists in distinguishing TNBC from other molecular subtypes and Luminal breast cancer from other molecular subtypes have significantly improved with the assistance of DT model. In the diagnosis of TNBC versus other subtypes, the average sensitivity, average specificity, and average accuracy of less experienced and more experienced radiologists increased by 0.090, 0.125, 0.114, and 0.060, 0.090, 0.083, respectively. In the diagnosis of Luminal versus other subtypes, the average sensitivity, average specificity, and average accuracy of less experienced and more experienced radiologists increased by 0.084, 0.152, 0.159, and 0.020, 0.100, 0.048.This study established an interpretable machine learning model to differentiate between breast cancer molecular subtypes, providing additional values for radiologists.• Interpretable machine learning model (MLM) could help clinicians and radiologists differentiate between breast cancer molecular subtypes. • The Shapley additive explanations (SHAP) technique can select important features for predicting the molecular subtypes of breast cancer from a large number of imaging signs. • Machine learning model can assist radiologists to evaluate the molecular subtype of breast cancer to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cherish应助xiaopan9083采纳,获得10
1秒前
充电宝应助xiaopan9083采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
无辜泥猴桃给无辜泥猴桃的求助进行了留言
3秒前
赵润泽完成签到 ,获得积分10
4秒前
科研通AI5应助keyan采纳,获得10
5秒前
5秒前
5秒前
不爱吃韭菜完成签到 ,获得积分10
5秒前
舒心台灯完成签到,获得积分10
10秒前
10秒前
利利发布了新的文献求助10
11秒前
aaaa完成签到,获得积分10
11秒前
不见高山完成签到,获得积分10
14秒前
老程完成签到,获得积分10
14秒前
15秒前
Stove完成签到,获得积分10
15秒前
害羞便当发布了新的文献求助10
15秒前
研友_Zzrx6Z完成签到,获得积分10
15秒前
JamesPei应助欣妹儿采纳,获得10
15秒前
16秒前
fggg完成签到,获得积分10
17秒前
17秒前
利利完成签到,获得积分10
18秒前
zho发布了新的文献求助10
20秒前
21秒前
linwenfengcool完成签到,获得积分10
23秒前
23秒前
ccccheao发布了新的文献求助10
24秒前
昔我依依发布了新的文献求助10
25秒前
奇点完成签到,获得积分10
25秒前
cwy完成签到,获得积分10
29秒前
ccccheao完成签到,获得积分20
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326680
关于积分的说明 10228052
捐赠科研通 3041768
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751