Underwater Species Detection using Channel Sharpening Attention

水下 计算机科学 人工智能 计算机视觉 频道(广播) 目标检测 特征(语言学) 锐化 预处理器 特征提取 模式识别(心理学) 地质学 计算机网络 语言学 海洋学 哲学
作者
Lihao Jiang,Yi Wang,Qi Jia,Shengwei Xu,Yu Liu,Xin Fan,Haojie Li,Risheng Liu,Xinwei Xue,Ruili Wang
标识
DOI:10.1145/3474085.3475563
摘要

With the continuous exploration of marine resources, underwater artificial intelligent robots play an increasingly important role in the fish industry. However, the detection of underwater objects is a very challenging problem due to the irregular movement of underwater objects, the occlusion of sand and rocks, the diversity of water illumination, and the poor visibility and low color contrast in the underwater environment. In this article, we first propose a real-world underwater object detection dataset (UODD), which covers more than 3K images of the most common aquatic products. Then we propose Channel Sharpening Attention Module (CSAM) as a plug-and-play module to further fuse high-level image information, providing the network with the privilege of selecting feature maps. Fusion of original images through CSAM can improve the accuracy of detecting small and medium objects, thereby improving the overall detection accuracy. We also use Water-Net as a preprocessing method to remove the haze and color cast in complex underwater scenes, which shows a satisfactory detection result on small-sized objects. In addition, we use the class weighted loss as the training loss, which can accurately describe the relationship between classification and precision of bounding boxes of targets, and the loss function converges faster during the training process. Experimental results show that the proposed method reaches a maximum AP of 50.1%, outperforming other traditional and state-of-the-art detectors. In addition, our model only needs an average inference time of 25.4 ms per image, which is quite fast and might suit the real-time scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助沉静蘑菇采纳,获得10
刚刚
正在完成签到,获得积分10
刚刚
bkagyin应助lxy采纳,获得10
1秒前
云澈发布了新的文献求助20
1秒前
1秒前
顾矜应助海海采纳,获得10
2秒前
科研通AI5应助海藻采纳,获得10
4秒前
5秒前
小王同学搞学术完成签到,获得积分20
5秒前
HDS发布了新的文献求助10
5秒前
6秒前
123完成签到,获得积分10
7秒前
7秒前
FashionBoy应助ardejiang采纳,获得10
7秒前
苹果新儿完成签到,获得积分10
7秒前
7秒前
沉静蘑菇完成签到,获得积分20
8秒前
大模型应助静香采纳,获得10
8秒前
9秒前
xiaoliu发布了新的文献求助10
10秒前
好运连连完成签到,获得积分10
10秒前
顾矜应助如意的碧蓉采纳,获得10
10秒前
11秒前
达叔发布了新的文献求助10
11秒前
SPRETEND发布了新的文献求助10
11秒前
tcf应助Hu_1111Fan采纳,获得10
12秒前
lxy发布了新的文献求助10
13秒前
zhaiping完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
积极的绫完成签到 ,获得积分20
14秒前
充电宝应助王森采纳,获得10
14秒前
14秒前
15秒前
小张很嚣张完成签到,获得积分10
15秒前
15秒前
波波发布了新的文献求助30
15秒前
调皮怜容发布了新的文献求助10
16秒前
独特跳跳糖完成签到 ,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791657
求助须知:如何正确求助?哪些是违规求助? 3336027
关于积分的说明 10278555
捐赠科研通 3052666
什么是DOI,文献DOI怎么找? 1675260
邀请新用户注册赠送积分活动 803270
科研通“疑难数据库(出版商)”最低求助积分说明 761165