聚乙烯亚胺
有机太阳能电池
X射线光电子能谱
材料科学
氧化铟锡
化学工程
接受者
图层(电子)
纳米技术
化学
复合材料
聚合物
物理
工程类
基因
生物化学
转染
凝聚态物理
作者
Mozhgan Sadeghianlemraski,Hany Aziz
摘要
The solvent-robustness and temporal stability of polyethylenimine (PEI) as an electron extraction layer (EEL) in inverted organic solar cells (OSCs) were studied. For that purpose, a PEI EEL is utilized in inverted OSCs with the archetypal Poly (3-hexylthiophene) (P3HT): [6,6]-Phenyl C61 butyric acid methyl ester (PC60BM) donor:acceptor system. Results show that soaking the PEI film in solvents (1-propanol and/or toluene) does not significantly impact OSC performance or photostability. As verified by X-ray photoelectron spectroscopy (XPS) measurements, the N atoms in PEI interact with indium-tin-oxide (ITO), causing PEI to strongly adhere to the surface of ITO so that potential processing solvents do not dissolve it. Shifts in N bands in the case of PEI on ITO compared to the PEI on glass confirm the presence of a strong physical interaction. In addition, comparing OSCs with fresh PEI and N2-stored PEI demonstrates that the PEI film is very stable over time, and a time gap between PEI deposition and subsequent fabrication processes does not affect OSC performance and photostability. We highlight that the utilization of PEI as a stable and robust EEL facilitates bridging between laboratory discoveries of OSCs with their practical demonstration and gives us considerable latitude in tackling the stringent requirements of OSC manufacturing.
科研通智能强力驱动
Strongly Powered by AbleSci AI