Explainable reinforcement learning for broad-XAI: a conceptual framework and survey

计算机科学 一套 强化学习 人工智能 鉴定(生物学) 航程(航空) 数据科学 运筹学 管理科学 数学 生物 历史 植物 复合材料 经济 考古 材料科学
作者
Richard Dazeley,Peter Vamplew,Francisco Cruz
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:35 (23): 16893-16916 被引量:23
标识
DOI:10.1007/s00521-023-08423-1
摘要

Abstract Broad-XAI moves away from interpreting individual decisions based on a single datum and aims to provide integrated explanations from multiple machine learning algorithms into a coherent explanation of an agent’s behaviour that is aligned to the communication needs of the explainee. Reinforcement Learning (RL) methods, we propose, provide a potential backbone for the cognitive model required for the development of Broad-XAI. RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems. However, these algorithms operate as black-box problem solvers, where they obfuscate their decision-making policy through a complex array of values and functions. EXplainable RL (XRL) aims to develop techniques to extract concepts from the agent’s: perception of the environment; intrinsic/extrinsic motivations/beliefs; Q-values, goals and objectives. This paper aims to introduce the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI. CXF is designed to incorporate many standard RL extensions and integrated with external ontologies and communication facilities so that the agent can answer questions that explain outcomes its decisions. This paper aims to: establish XRL as a distinct branch of XAI; introduce a conceptual framework for XRL; review existing approaches explaining agent behaviour; and identify opportunities for future research. Finally, this paper discusses how additional information can be extracted and ultimately integrated into models of communication, facilitating the development of Broad-XAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忧伤的井发布了新的文献求助10
1秒前
慕青应助Ikram采纳,获得10
1秒前
英姑应助zhouleiwang采纳,获得10
1秒前
Suttier完成签到 ,获得积分10
2秒前
2秒前
未来的幻想完成签到,获得积分10
3秒前
3秒前
阿月完成签到,获得积分10
4秒前
沉默采波完成签到 ,获得积分10
6秒前
谭小谭发布了新的文献求助10
7秒前
sycsyc完成签到,获得积分10
7秒前
菜籽发布了新的文献求助10
8秒前
彭于晏应助忧伤的井采纳,获得10
8秒前
yyy完成签到 ,获得积分10
9秒前
研友_89Nm7L发布了新的文献求助10
9秒前
洪七公完成签到,获得积分10
10秒前
帅气的宽完成签到 ,获得积分10
12秒前
17秒前
英俊的铭应助ZW采纳,获得10
21秒前
Jasper应助研友_89Nm7L采纳,获得10
23秒前
直立行走完成签到,获得积分10
23秒前
tt完成签到 ,获得积分10
27秒前
依人如梦完成签到 ,获得积分10
27秒前
natsu401完成签到 ,获得积分10
29秒前
33秒前
fabea完成签到,获得积分10
35秒前
38秒前
concise完成签到 ,获得积分10
38秒前
爱放屁的马邦德完成签到,获得积分10
40秒前
雾失楼台完成签到,获得积分10
41秒前
润润轩轩完成签到 ,获得积分10
42秒前
斯文败类应助yu采纳,获得10
43秒前
畅快的饼干完成签到 ,获得积分10
43秒前
44秒前
uouuo完成签到 ,获得积分10
44秒前
45秒前
47秒前
Hello应助萝卜干采纳,获得10
49秒前
666发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304