Seed the Views: Hierarchical Semantic Alignment for Contrastive Representation Learning

计算机科学 人工智能 模式识别(心理学) 关系(数据库) 相似性(几何) 代表(政治) 图像(数学) 自然语言处理 假阳性悖论 机器学习
作者
Haohang Xu,Xiaopeng Zhang,Hao Li,Lingxi Xie,Hongkai Xiong,Qi Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tpami.2022.3176690
摘要

Self-supervised learning based on instance discrimination has shown remarkable progress. In particular, contrastive learning,which regards each image as well as its augmentations as an individual class and tries to distinguish them from all other images, has been verified effective for representation learning. However, conventional contrastive learning does not model the relation between semantically similar samples explicitly. In this paper, we propose a general module that considers the semantic similarity among images. This is achieved by expanding the views generated by a single image to Cross-Samples and Multi-Levels, and modeling the invariance to semantically similar images in a hierarchical way. Specifically, the cross-samples are generated by a data mixing operation, which is constrained within samples that are semantically similar, while the multi-level samples are expanded at the intermediate layers of a network. In this way, the contrastive loss is extended to allow for multiple positives per anchor, and explicitly pulling semantically similar images together at different layers of the network. Our method, termed as CSML, has the ability to integrate multi-level representations across samples in a robust way. CSML is applicable to current contrastive based methods and consistently improves the performance. Notably, using MoCo v2 as an instantiation, CSML achieves 76.6% top-1 accuracy with linear evaluation using ResNet-50 as backbone, 66.7% and 75.1% top-1 accuracy with only 1% and 10% labels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
卡卡西应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
斌城完成签到,获得积分10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
天真的不评完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
3秒前
都是应助科研通管家采纳,获得20
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
xxy发布了新的文献求助10
5秒前
刘傻发布了新的文献求助10
5秒前
6秒前
大模型应助栀初采纳,获得10
7秒前
科研通AI5应助Ambi采纳,获得10
9秒前
LEESO完成签到,获得积分10
10秒前
热情平凡发布了新的文献求助10
10秒前
机灵的曼青给机灵的曼青的求助进行了留言
11秒前
研友_nq5EGn完成签到 ,获得积分10
12秒前
12秒前
YOYOYO完成签到,获得积分10
12秒前
老八的嘴发布了新的文献求助10
15秒前
谢雨晨发布了新的文献求助10
15秒前
wqw发布了新的文献求助10
15秒前
wy.he应助lambda采纳,获得10
16秒前
无奈慕卉完成签到 ,获得积分10
17秒前
栀初发布了新的文献求助10
18秒前
Megan萌萌萌完成签到,获得积分10
18秒前
ljl86400完成签到,获得积分10
19秒前
19秒前
能力越小责任越小完成签到,获得积分10
19秒前
Cherish应助迷你的唯雪采纳,获得60
21秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801551
求助须知:如何正确求助?哪些是违规求助? 3347320
关于积分的说明 10332971
捐赠科研通 3063524
什么是DOI,文献DOI怎么找? 1681853
邀请新用户注册赠送积分活动 807754
科研通“疑难数据库(出版商)”最低求助积分说明 763867