An Improved Mixture Density Network Via Wasserstein Distance Based Adversarial Learning for Probabilistic Wind Speed Predictions

风速 概率密度函数 混合模型 计算机科学 风力发电 概率逻辑 SCADA系统 密度估算 混合物分布 时间戳 人工智能 气象学 统计 数学 工程类 实时计算 物理 估计员 电气工程
作者
Luoxiao Yang,Zhong Zheng,Zijun Zhang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:13 (2): 755-766 被引量:12
标识
DOI:10.1109/tste.2021.3131522
摘要

This paper develops a novel improved mixture density network via Wasserstein distance-based adversarial learning (WA-IMDN) for achieving more accurate probabilistic wind speed predictions (PWSP). The proposed method utilizes the historical supervisory control and data acquisition (SCADA) system data collected from multiple wind turbines (WTs) in different wind farms to predict the wind speed probability density function (PDF) of a targeted WT at the next timestamp. To better capture the fluctuation pattern of historical wind speed sequences and estimate parameters of the probability mixture model for approximating the wind speed PDF, an improved mixture density network (IMDN) is proposed. To address drawbacks of the traditional maximum likelihood estimation (MLE) on training the mixture density network, a Wasserstein distance (WD)-based adversarial learning is developed and the reparameterization trick is employed for the gradient delivery. The effectiveness of the proposed WA-IMDN is validated based on SCADA data (One dataset is publicly accessible) by benchmarking against a set of the commonly considered and recently reported PWSP methods, such as the mixture density network (MDN), maximum likelihood estimation (MLE) based mixture density attention network (MLE-IMDN), recent DMDNN and Improved Deep Mixture Density Network (IDMDN). Results demonstrate the superior performance of the proposed WA-IMDN on the PWSP. To demonstrate the repeatability of the presented research, we release our code at https://github.com/IkeYang/WA-IMDN- .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苯二氮卓发布了新的文献求助10
2秒前
钇铷完成签到,获得积分10
2秒前
2秒前
刘国建郭菱香完成签到 ,获得积分10
3秒前
火火完成签到,获得积分10
3秒前
岁岁完成签到 ,获得积分10
3秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
iNk应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得30
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
gao_yiyi应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
十八完成签到 ,获得积分10
7秒前
8秒前
灵巧越泽发布了新的文献求助10
9秒前
11秒前
dadad完成签到,获得积分10
12秒前
YY完成签到,获得积分10
12秒前
充电宝应助一个小胖子采纳,获得10
12秒前
合适冰棍完成签到 ,获得积分10
13秒前
顾矜应助闪闪雅阳采纳,获得10
15秒前
GGY完成签到 ,获得积分10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777801
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213817
捐赠科研通 3038554
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275