Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3

陶瓷 材料科学 储能 压电 电介质 居里温度 复合材料 热力学 光电子学 凝聚态物理 物理 铁磁性 功率(物理)
作者
Miao Zhang,Haibo Yang,Yiwen Yu,Ying Lin
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:425: 131465-131465 被引量:134
标识
DOI:10.1016/j.cej.2021.131465
摘要

The damage of lead-based ceramics to our environment and health completely hindered their industrial applications. K0.5Na0.5NbO3 (KNN) ceramic material is considered as a good substitute for lead-free ceramics because of its high dielectric constant, excellent piezoelectric properties, high Curie temperature and sustainability. However, it is challenging to achieve their high energy-storage performances because of their large energy loss density (Wloss) under an applied electric field. Thus, this work proposes a combinatorial optimization strategy of inducing polar nano-regions and improving breakdown strength (BDS) to enhance the energy-storage performances of the KNN-based ceramics. As a result, we obtained a record high recoverable energy-storage density (Wrec) value of 7.4 J·cm−3 for the Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 (BZNT)-modified KNN ceramic mainly due to its enhanced BDS. Furthermore, remarkable temperature stability was obtained for the 0.90KNN-0.10BZNT ceramic over a wide temperature range (20–180 °C). Remarkably, the first-order reversal curve (FORC) confirmed the excellent energy-storage performances of the 0.90KNN-0.10BZNT ceramic, which we ascribed to its enhanced relaxation behavior. Additionally, 0.90KNN-0.10BZNT material exhibited excellent pulsed charge/discharge properties of the high power density (184.84 MW·cm−3) and fast discharge time (46.3 ns). Our results demonstrated a novel strategy for improving the energy-storage performances of dielectric ceramics. This strategy could be used to design other or similar materials for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言余完成签到,获得积分10
1秒前
火星上的沛春完成签到,获得积分10
2秒前
3秒前
3秒前
雪白鸿涛完成签到,获得积分10
4秒前
shidandan完成签到 ,获得积分10
6秒前
虾米发布了新的文献求助10
8秒前
8秒前
10秒前
鱼咬羊发布了新的文献求助30
11秒前
12秒前
14秒前
小马牛油完成签到,获得积分10
17秒前
虞糜发布了新的文献求助10
18秒前
科研通AI5应助欢喜的天空采纳,获得10
18秒前
小马牛油发布了新的文献求助20
21秒前
22秒前
22秒前
23秒前
asdfks完成签到,获得积分10
24秒前
春申君完成签到 ,获得积分10
24秒前
25秒前
千空完成签到,获得积分10
25秒前
27秒前
27秒前
Ava应助nylon采纳,获得10
28秒前
鱼子酱发布了新的文献求助10
29秒前
千空发布了新的文献求助10
31秒前
31秒前
李一诺发布了新的文献求助10
32秒前
Mira发布了新的文献求助10
34秒前
小鱼儿完成签到,获得积分10
34秒前
34秒前
勤恳风华完成签到,获得积分10
35秒前
SinnyMou发布了新的文献求助10
37秒前
鱼子酱完成签到,获得积分10
38秒前
科研通AI2S应助w934420513采纳,获得30
39秒前
zyw完成签到 ,获得积分10
40秒前
43秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366