Interval grey numbers based multi-attribute decision making method for supplier selection

区间(图论) 选择(遗传算法) 计算机科学 集合(抽象数据类型) 数据挖掘 控制论 价值(数学) 供应商评价 基础(线性代数) 数学优化 人工智能 运筹学 机器学习 数学 供应链管理 供应链 组合数学 程序设计语言 法学 政治学 几何学
作者
Naiming Xie,Jianghui Xin
出处
期刊:Kybernetes [Emerald Publishing Limited]
卷期号:43 (7): 1064-1078 被引量:22
标识
DOI:10.1108/k-01-2014-0010
摘要

Purpose – The purpose of this paper is to study a novel grey possibility degree approach, which is combined with multi-attribute decision making (MADM) and applied MADM model for solving supplier selection problem under uncertainty information. Design/methodology/approach – The supplier selection problem is a typical MADM problem, in which information of a series of indexes should be aggregated. However, it is relatively easy for decision makers to define information in uncertainty, sometimes as a grey number, rather than a precise number. By transforming linguistic scale of rating supplier selection attributes into interval grey numbers, a novel grey MADM method is developed. Steps of proposed model were provided, and a novel grey possibility degree approach was proposed. Finally, a numerical example of supplier selection is utilized to demonstrate the proposed approach. Findings – The results show that the proposed approach could solve the uncertainty decision-making problem. A numerical example of supplier selection is utilized to demonstrate the proposed approach. The results show that the proposed method is useful to aggregate decision makers’ information so as to select the potential supplier. Practical implications – The approach constructed in the paper can be used to solving uncertainty decision-making problems that the certain value of the decision information could not collect while the interval value set could be defined. Obviously it can be utilized for other MADM problem. Originality/value – The paper succeeded in redefining interval grey number, constructing a novel interval grey number based MADM approach and providing the solution of the proposed approach. It is very useful to solving system forecasting problem and it contributed undoubtedly to improve grey decision-making models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
锣大炮完成签到,获得积分10
6秒前
7秒前
大模型应助listener采纳,获得10
8秒前
钰姝发布了新的文献求助10
8秒前
8秒前
壮观的夏云完成签到,获得积分10
8秒前
李琳完成签到,获得积分20
11秒前
windows发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
精灵夜雨发布了新的文献求助10
13秒前
sjx1116完成签到 ,获得积分10
15秒前
15秒前
asdfqwer应助wwq采纳,获得10
18秒前
18秒前
18秒前
动听的笑南完成签到,获得积分10
21秒前
科研通AI2S应助舒心的天采纳,获得10
21秒前
ly发布了新的文献求助10
21秒前
孟惜儿完成签到,获得积分0
25秒前
Phoenix发布了新的文献求助10
27秒前
CipherSage应助Gloria采纳,获得10
29秒前
黄海完成签到,获得积分10
30秒前
畜牧笑笑发布了新的文献求助10
30秒前
30秒前
忧虑的慕山完成签到,获得积分10
31秒前
哈哈哈哈哈完成签到,获得积分10
32秒前
默默烙发布了新的文献求助10
34秒前
妮妮完成签到,获得积分10
36秒前
漫漫完成签到 ,获得积分10
37秒前
木子完成签到,获得积分10
37秒前
38秒前
端庄的火龙果完成签到,获得积分10
39秒前
ly完成签到,获得积分10
39秒前
39秒前
42秒前
FashionBoy应助科研通管家采纳,获得10
42秒前
43秒前
orixero应助科研通管家采纳,获得50
43秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3882900
求助须知:如何正确求助?哪些是违规求助? 3425273
关于积分的说明 10743742
捐赠科研通 3150257
什么是DOI,文献DOI怎么找? 1738474
邀请新用户注册赠送积分活动 839388
科研通“疑难数据库(出版商)”最低求助积分说明 784441