<title>Target detection in infrared and SAR terrain images using a non-Gaussian stochastic model</title>

计算机科学 杂乱 人工智能 地形 合成孔径雷达 探测器 像素 匹配滤波器 计算机视觉 高斯分布 高斯过程 模式识别(心理学) 滤波器(信号处理) 算法 雷达 物理 电信 生态学 生物 量子力学
作者
Philip B. Chapple,D.C. Bertilone,Robert S. Caprari,Sergio Angeli,Garry N. Newsam
出处
期刊:Proceedings of SPIE 被引量:7
标识
DOI:10.1117/12.352951
摘要

Automatic detection of targets in natural terrain images is a difficult problem when the size and brightness of the targets is similar to that of the background clutter. The best results are achieved by techniques that are built on modeling the images as a stochastic process and detection as a problem in statistical decision theory. The current paper follows this approach in developing a new stochastic model for images of natural terrain and introducing some novel detection techniques for small targets that are based on hypothesis testing of neighborhoods of pixels. The new stochastic model assumes the observed image to be a pointwise transform of an underlying stationary Gaussian random field. This model works well in practice for a wide range of electro-optic and synthetic aperture radar (SAR) natural images. Furthermore the model motivates the design of target detection algorithms based on hypothesis tests of the likelihood of pixel neighborhoods in the underlying Gaussian image. We have developed a suite of detection algorithms with this model, and have trailled them on ensembles of real infra-red and SAR images containing small artificially inserted targets at random locations. Receiver operating characteristics (ROCs) have been compiled, and the dependence of detection statistics on the target to background contrast ratio has been explored. The results show that for the infrared imagery the model-based algorithms compare favorably with the standard adaptive threshold detector and the generalized matched filter detector. In the case of SAR imagery with unobscured targets, the generalized matched filter performance is superior, but the model-based algorithms have the advantage of not requiring prior information on target statistics. While all algorithms have similar poor performance for infrared images with low contrast ratios, the new algorithms significantly outperform existing techniques where there is good contrast. Finally the advantages and disadvantages of applying such techniques in practical detection systems are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小云发布了新的文献求助10
3秒前
4秒前
快乐星完成签到,获得积分10
9秒前
10秒前
肖肖完成签到,获得积分10
11秒前
宝小静完成签到,获得积分10
12秒前
12秒前
搜集达人应助布医采纳,获得10
14秒前
隐形曼青应助123123采纳,获得10
16秒前
不安的白昼完成签到 ,获得积分10
16秒前
16秒前
可爱的函函应助司连喜采纳,获得10
16秒前
派大兴完成签到,获得积分20
19秒前
杂化轨道退役研究员完成签到,获得积分10
19秒前
21秒前
木子李完成签到 ,获得积分10
21秒前
21秒前
kmzzy完成签到 ,获得积分10
22秒前
24秒前
深情安青应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
Hello应助踏实雨采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
27秒前
China完成签到,获得积分10
28秒前
布医发布了新的文献求助10
28秒前
吱吱发布了新的文献求助10
28秒前
papa应助认真荣轩采纳,获得10
29秒前
30秒前
30秒前
botanist完成签到 ,获得积分10
31秒前
31秒前
神勇友灵完成签到,获得积分10
32秒前
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669